Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1996 Mar-Apr;13(2):303-9.
doi: 10.1017/s0952523800007549.

Extra-receptive-field motion facilitation in on-off directionally selective ganglion cells of the rabbit retina

Affiliations
Comparative Study

Extra-receptive-field motion facilitation in on-off directionally selective ganglion cells of the rabbit retina

F R Amthor et al. Vis Neurosci. 1996 Mar-Apr.

Abstract

The excitatory receptive-field centers of On-Off directionally selective (DS) ganglion cells of the rabbit retina correspond closely to the lateral extent of their dendritic arborizations. Some investigators have hypothesized from this that theories for directional selectivity that entail a lateral spread of excitation from outside the ganglion cell dendritic tree, such as from starburst amacrine cells, are therefore untenable. We show here that significant motion facilitation is conducted from well outside the classical excitatory receptive-field center (and, therefore, dendritic arborization) of On-Off DS ganglion cells for preferred-direction, but not null-direction moving stimuli. These results are consistent with a role in directional selectivity for cells with processes lying beyond the On-Off ganglion cell's excitatory receptive-field center. These results also highlight the fundamental distinction in retinal ganglion cell receptive-field organization between classical excitatory mechanisms and those that facilitate other excitation without producing directly observable excitation by themselves.

PubMed Disclaimer

Publication types

MeSH terms