Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 May;353(6):630-40.
doi: 10.1007/BF00167182.

The 5-HT1A receptor antagonist (S)-UH-301 augments the increase in extracellular concentrations of 5-HT in the frontal cortex produced by both acute and chronic treatment with citalopram

Affiliations

The 5-HT1A receptor antagonist (S)-UH-301 augments the increase in extracellular concentrations of 5-HT in the frontal cortex produced by both acute and chronic treatment with citalopram

L Arborelius et al. Naunyn Schmiedebergs Arch Pharmacol. 1996 May.

Abstract

In a recent study, utilizing single cell recording techniques, we have shown that administration of 5-HT1A receptor antagonists, e.g. (S)-UH-301, to rats concomitantly treated, acute or chronically, with the selective serotonin reuptake inhibitor (SSRI) citalopram significantly increases the activity of 5-hydroxytryptamine (5-HT) containing neurons in the dorsal raphe nucleus (DRN). Here we report correlative experiments using microdialysis in freely moving animals to measure extracellular levels of 5-HT and its metabolite 5-hydroxyindole acetic acid (5-HIAA) in the frontal cortex, a major projection area for DRN-5-HT neurons. Acute administration of (S)-UH-301 (2.5 mg/kg s.c.) or citalopram (2.0 mg/kg s.c.) increased 5-HT concentrations with a maximum of about 70% and 185%, respectively, above baseline. However, when (S)-UH-301 was administered 30 min before citalopram the maximal increase in 5-HT levels was approximately 400%. In rats chronically treated with citalopram (20 mg/kg/day i.p. for 14 days) basal 5-HT concentrations in the frontal cortex were significantly increased and 5-HIAA concentrations were decreased when measured 10-12 h, but not 18-20 h, after the last injection of citalopram, as compared to basal 5-HT and 5-HIAA concentrations in chronic saline-treated rats. When (S)-UH-301 (2.5 mg/kg s.c.) was administered 12 h, but not 20 h, after the last dose of citalopram it produced a significantly larger increase in extracellular concentrations of 5-HT than in control rats. However, in rats pretreated with a single, very high dose of citalopram, 20 mg/kg i.p., administration of (S)-UH-301 at 12 h after citalopram did not increase 5-HT levels. The augmentation by (S)-UH-301 of the increase in brain 5-HT output produced by acute administration of citalopram is probably due to antagonism of the citalopram induced feedback inhibition of 5-HT cells in the DRN, as previously suggested. However, the capacity of (S)-UH-301 to further increase the already elevated extracellular concentrations of 5-HT in brain in animals maintained on a chronic citalopram regimen, in which significant tolerance to the initial feedback inhibition of DRN-5-HT cells and developed, represents a novel finding. Generally, the reduced feedback inhibition of 5-HT neurons obtained with chronic citalopram treatment, and the associated elevation of brain 5-HT concentrations, may be related to functional desensitization of somatodendritic 5-HT1A autoreceptors in the DRN. This phenomenon may also largely explain the larger increase in 5-HT output produced by (S)-UH-301 in chronic citalopram treated animals as compared to its effect in control animals. Yet, a contributory factor may be a slight, remaining feedback inhibition of the 5-HT cells caused by residual citalopram at 12, but not 20 h after its last administration. Previous clinical studies suggest that addition of a 5-HT1A receptor antagonist to an SSRI in the treatment of depression may accelerate the onset of clinical effects. Moreover, in therapy-resistant cases maintained on SSRI treatment, addition of a 5-HT1A receptor antagonist may improve clinical efficacy. Since the therapeutic effect of SSRIs in depression has been found to be critically linked to the availability of 5-HT in brain, our experiments results support, in principle, both of the above clinically based notions.

PubMed Disclaimer

References

    1. Brain Res. 1978 Sep 15;153(1):169-75 - PubMed
    1. Neurosci Lett. 1994 Apr 25;171(1-2):183-6 - PubMed
    1. Psychopharmacology (Berl). 1984;84(4):457-65 - PubMed
    1. Brain Res. 1992 Jul 3;584(1-2):322-4 - PubMed
    1. Eur J Pharmacol. 1994 Aug 1;260(2-3):251-5 - PubMed

Publication types

MeSH terms

LinkOut - more resources