Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Mar;17(3):607-11.
doi: 10.1002/elps.1150170332.

Plasma protein adsorption patterns on liposomes: establishment of analytical procedure

Affiliations

Plasma protein adsorption patterns on liposomes: establishment of analytical procedure

J E Diederichs. Electrophoresis. 1996 Mar.

Abstract

After intravenous (i.v.) injection, colloidal drug carriers such as liposomes, emulsions, polymeric or solid lipid nanoparticles immediately interact with plasma proteins. The adsorbed plasma protein patterns depend on physico-chemical characteristics of the carriers' surface and are regarded as a key factor for the in vivo behavior of the carriers. The comprehension of the correlation between protein adsorption and in vivo organ distribution can be utilized to obtain drug targeting to different tissues. Carriers with different protein adsorption patterns will interact with different tissue-specific receptors or will be recognized by different macrophage subpopulations. Two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) was applied to determine the protein adsorption patterns on polystyrene particles as model carriers. To transfer this analytical method to i.v. injectable colloidal carriers such as liposomes, a new sample preparation method was developed. The separation of liposomes from plasma after incubation was achieved by gel filtration using a Sepharose 2B column. This technique allowed a mild separation independent from eluent composition and only according to size differences. Possible protein desorption from the liposomes and adsorption onto the gel were minimized by using an eluent with a sufficiently high ionic strength. To estimate the efficiency of separation, the content of liposomes and plasma in each fraction being eluted was determined by ultraviolet (UV) spectroscopy. With this new separation method plasma protein adsorption patterns on liposomes could be analyzed for the first time. The sample preparation by gel filtration seemed to have no influence on liposome stability as far as size distribution is concerned.

PubMed Disclaimer

LinkOut - more resources