Microbubbles as novel pressure-sensitive MR contrast agents
- PMID: 8744005
- DOI: 10.1002/mrm.1910350603
Microbubbles as novel pressure-sensitive MR contrast agents
Abstract
Magnetic resonance imaging contrast agents that are sensitive to pressure would be useful for evaluating cardiovascular function. One such potential contrast agent consists of gas-filled liposome microbubbles. The magnetic susceptibility of the microbubbles locally perturb the static magnetic field, which influences the transverse-relaxation properties of the surrounding medium. Changes in the pressure alter the bubble dimensions, which affects the magnetic field perturbations and, hence, the transverse-relaxation. The effect of these microbubbles on the T2 relaxation times of a water-based medium was measured for liposomes filled with different gases-nitrogen, argon, air, oxygen, xenon, neon, perfluoropentane, perfluorobutane, and sulfur hexafluoride. The air-filled, perfluoropentane-filled and the oxygen-filled liposomes demonstrated the largest effect on transverse-relaxation. The influence of pressure on both gradient-echo and spin-echo signal intensities for air-filled microbubbles was also evaluated. Pressure-induced changes in signal intensity were consistently observed for both the spin-echo and gradient-echo pulses sequences.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
