Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Mar;14(4):321-8.
doi: 10.1016/0264-410x(95)00189-8.

Enhancement of antigen presentation of influenza virus hemagglutinin by the natural human anti-Gal antibody

Affiliations

Enhancement of antigen presentation of influenza virus hemagglutinin by the natural human anti-Gal antibody

U Galili et al. Vaccine. 1996 Mar.

Abstract

Immunogenicity of inactivated virus or subviral vaccines may be enhanced by complexing with an IgG antibody. Such antibody would increase the uptake, processing and presentation of the vaccine's antigens by antigen presenting cells (APC), via the adhesion of the antibody-vaccine complex to Fc-receptors on macrophages and other APC. A natural antibody in humans, which may be generally exploited for this purpose, is the natural anti-Gal antibody. This antibody is ubiquitously produced as 1% of circulating IgG in humans and Old World primates, and it interacts specifically with the carbohydrate epitope Gal alpha 1-3 Gal beta 1-4 GlcNAc-R (termed the alpha-galactosyl epitope). This epitope is synthesized in large amounts in cells of nonprimate mammals and New World monkeys by the glycosylation enzyme alpha 1,3 galactosyltransferase. Here we describe in vitro studies on the ability of anti-Gal to bind to alpha-galactosyl epitopes on influenza virus propagated in mammalian cells, and to enhance presentation by APC of viral hemagglutinin antigenic determinants to specific helper T cell clones. The various approaches for achieving alpha-galactosyl epitope expression on virion and subviral vaccines are discussed.

PubMed Disclaimer

MeSH terms