Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1995;5(3):335-58.
doi: 10.1016/0960-5428(95)00012-q.

Role of immune activation and cytokine expression in HIV-1-associated neurologic diseases

Affiliations
Review

Role of immune activation and cytokine expression in HIV-1-associated neurologic diseases

M Yoshioka et al. Adv Neuroimmunol. 1995.

Abstract

Central nervous system (CNS) involvement is common during human immunodeficiency virus type-1 (HIV-1) infection. The neurologic disease of the CNS most frequently observed during acquired immunodeficiency syndrome (AIDS) is HIV-1-associated cognitive/motor complex or AIDS dementia complex (ADC), which is most likely a direct consequence of HIV-1 infection of the CNS. The peripheral nervous system (PNS) is also affected in HIV-1-infected individuals and there are several features of immune- and cytokine-related pathogenesis in both the CNS and PNS that are reviewed. Several lines of evidence demonstrate aspects of immune activation in the CNS and peripheral nervous system (PNS) of HIV-1-infected individuals. The relative paucity of HIV-1 expression in contrast to widespread functional and pathologic changes in the CNS and PNS of AIDS patients, and the lack of evidence of productive infection of HIV-1 in neuronal cells in vivo lead to the possibility of indirect or immunopathogenic mechanisms for HIV-1-related neurologic diseases. Proposed mechanisms of neuronal and glial cell damage are injury of oligodendrocytes by tumor necrosis factor-alpha (TNF-alpha) released from activated macrophage/microglia, calcium-dependent excitoneurotoxicity induced by gp120 HIV-1 envelope protein, N-methyl-D-aspartate (NMDA) receptor-mediated neurotoxicity by quinolinic acid (a product of activated macrophages), cell injury by HIV-1-specific cytotoxic T cells, and apoptosis of oligodendrocytes or neurons triggered by interaction between cell surface receptors and HIV-1 gp120 protein. Common to those mechanisms is the dependence on cellular activation with expression of proinflammatory cytokines (TNF-alpha, interleukin-1). Amplification of activation signals through the cytokine network by macrophage/astrocyte/endothelial cell interactions, and cell-to-cell contact between activated macrophages and neural cells by upregulation of adhesion molecules dramatically enhances the toxic effect of macrophage products. Expression of immunosuppressive cytokines such as interleukin-4, interleukin-6, and transforming growth factor-beta is also increased in the CNS and PNS of HIV-1-infected patients. This may serve as neuroprotective and regenerative mechanism against insults to nervous system tissue.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms