Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Dec;353(1):102-9.
doi: 10.1007/BF00168922.

The inhibitory modulation of guinea-pig intestinal peristalsis caused by capsaicin involves calcitonin gene-related peptide and nitric oxide

Affiliations

The inhibitory modulation of guinea-pig intestinal peristalsis caused by capsaicin involves calcitonin gene-related peptide and nitric oxide

L Bartho et al. Naunyn Schmiedebergs Arch Pharmacol. 1995 Dec.

Abstract

The effect of capsaicin-induced stimulation of afferent neurons on peristalsis and the possible neural mediators involved in this action were examined in the guinea-pig isolated ileum. The intraluminal pressure threshold for eliciting peristaltic waves was used to quantify facilitation (decrease in threshold) or inhibition (increase in threshold) of peristalsis. Capsaicin (0.1-1 microM) caused an initial short-lasting stimulation of peristalsis followed by a prolonged inhibition of peristaltic activity. Capsaicin (1 microM) was ineffective when the gut segments had been pretreated with 3.3 microM capsaicin, which is indicative of an afferent neuron-dependent action of the drug. In contrast, the abolition of peristalsis caused by a high concentration of capsaicin (33 microM) was fully reversible on removal and reproducible on readministration of capsaicin, a feature characteristic of a nonspecific depression of smooth muscle excitability. Baseline peristalsis and the excitatory/inhibitory effect of capsaicin (1 microM) on peristalsis remained unaltered by a combination of the tachykinin NK1 receptor antagonist (+)-(2S, 3S)-3-(2-methoxybenzylamino)-2-phenyl piperidine (CP-99,994; 0.3 microM) and the tachykinin NK2 receptor antagonist (L(-)-N-methyl-N[4-acetylamino-4-phenyl-piperidine-2-(3,4- -dichlorophenyl)butyl]-benzamide (SR-48,968; 0.1 microM). Further experiments, performed in the presence of a low concentration of atropine (10 nM) showed that the calcitonin gene-related peptide (CGRP) antagonist human alpha-calcitonin gene-related peptide (8-37) [hCGRP(8-37); 10 microM] attenuated the delayed inhibitory effect of capsaicin on peristalsis, but did not influence baseline peristaltic activity and the capsaicin-induced facilitation of peristalsis. Blockade of nitric oxide (NO) synthesis by NG-nitro-L-arginine methylester (L-NAME, 300 microM) facilitated baseline peristaltic activity and reduced the delayed inhibition of peristalsis caused by capsaicin (1 microM) without affecting the initial peristalsis-stimulating action of capsaicin. The effects of L-NAME were prevented by L-arginine (1 mM). The data of the current study indicate that capsaicin-sensitive afferent neurons do not participate in the neural pathways subserving peristalsis in the guinea-pig small intestine, but modulate peristaltic activity upon stimulation with capsaicin. The initial stimulant action of capsaicin on peristalsis is independent of tachykinins acting via NK1 or NK2 receptors, while the delayed capsaicin-induced depression of peristalsis involves CGRP and NO.

PubMed Disclaimer

References

    1. Eur J Pharmacol. 1990 May 3;180(1):13-9 - PubMed
    1. Eur J Pharmacol. 1994 Jan 14;251(2-3):221-7 - PubMed
    1. Neurosci Lett. 1991 Aug 5;129(1):156-9 - PubMed
    1. Neurosci Lett. 1992 Dec 14;148(1-2):121-5 - PubMed
    1. Eur J Pharmacol. 1988 May 10;149(3):393-5 - PubMed

Publication types

LinkOut - more resources