Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Aug 22;382(6593):731-5.
doi: 10.1038/382731a0.

Oxidative DNA damage through long-range electron transfer

Affiliations

Oxidative DNA damage through long-range electron transfer

D B Hall et al. Nature. .

Abstract

The possibility has been considered for almost forty years that the DNA double helix, which contains a pi-stacked array of heterocyclic base pairs, could be a suitable medium for the migration of charge over long molecular distances. This notion of high charge mobility is a critical consideration with respect to DNA damage. We have previously found that the DNA double helix can serve as a molecular bridge for photo-induced electron transfer between metallointercalators, with fast rates (> or = 10(10)s-1) and with quenching over a long distance (>40 A). Here we use a metallointercalator to introduce a photoexcited hole into the DNA pi-stack at a specific site in order to evaluate oxidative damage to DNA from a distance. Oligomeric DNA duplexes were prepared with a rhodium intercalator covalently attached to one end and separated spatially from 5'-GG-3' doublet sites of oxidation. Rhodium-induced photo-oxidation occurs specifically at the 5'-G in the 5'-GG-3' doublets and is observed up to 37 A away from the site of rhodium intercalation. We find that the yield of oxidative damage depends sensitively upon oxidation potential and pi-stacking, but not on distance. These results demonstrate directly that oxidative damage to DNA may be promoted from a remote site as a result of hole migration through the DNA pi-stack.

PubMed Disclaimer

Publication types