Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Sep;64(9):3646-51.
doi: 10.1128/iai.64.9.3646-3651.1996.

Novel pathogenic mechanism of microbial metalloproteinases: liberation of membrane-anchored molecules in biologically active form exemplified by studies with the human interleukin-6 receptor

Affiliations

Novel pathogenic mechanism of microbial metalloproteinases: liberation of membrane-anchored molecules in biologically active form exemplified by studies with the human interleukin-6 receptor

P Vollmer et al. Infect Immun. 1996 Sep.

Abstract

Certain membrane-anchored proteins, including several cytokines and cytokine receptors, can be released into cell supernatants through the action of endogenous membrane-bound metalloproteinases. The shed molecules are then able to fulfill various biological functions; for example, soluble interleukin-6 receptor (sIL-6R) can bind to bystander cells, rendering these cells sensitive to the action of IL-6. Using IL-6R as a model substrate, we report that the metalloproteinase from Serratia marcescens mimics the action of the endogenous shedding proteinase. Treatment of human monocytes with the bacterial protease led to a rapid release of sIL-6R into the supernatant. This effect was inhibitable with TAPI [N-(D,L-[2-(hydroxyaminocarbonyl)methyl]-4-methylpentanoyl) L-3-(2' naphthyl)-alanyl-L-alanine, 2-aminoethyl amide], a specific inhibitor of the membrane-bound intrinsic metalloproteinase, but not with other conventional proteinase inhibitors. sIL-6R-liberating activity was also detected in culture supernatants of Staphylococcus aureus, Pseudomonas aeruginosa, and Listeria monocytogenes, organisms that are known to produce metalloproteinases. sIL-6R released through the action of S. marcescens metalloproteinase retained biological activity and rendered IL-6-unresponsive human hepatoma cells sensitive to stimulation with IL-6. This was shown by Northern (RNA) blot detection of haptoglobin mRNA and by quantitative measurements of de novo-synthesized haptoglobin in cell supernatants. Analysis of immunoprecipitated, radiolabeled sIL-6R revealed that the bacterial protease cleaved IL-6R at a site distinct from that utilized by the endogenous protease. These studies show that membrane-anchored proteins can be released in active form through cleavage at multiple sites, and they uncover a novel mechanism via which microbial proteases possibly provoke long-range biological effects in the host organism.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Anal Biochem. 1983 Jul 1;132(1):6-13 - PubMed
    1. Biochem Biophys Res Commun. 1987 Aug 31;147(1):219-25 - PubMed
    1. Biochemistry. 1991 Oct 22;30(42):10065-74 - PubMed
    1. J Immunol Methods. 1991 Nov 22;144(2):247-51 - PubMed
    1. Microb Pathog. 1992 Mar;12(3):237-44 - PubMed

Publication types