Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1996 Aug 6;35(31):9995-10003.
doi: 10.1021/bi9603027.

A eubacterial Mycobacterium tuberculosis tRNA synthetase is eukaryote-like and resistant to a eubacterial-specific antisynthetase drug

Affiliations
Comparative Study

A eubacterial Mycobacterium tuberculosis tRNA synthetase is eukaryote-like and resistant to a eubacterial-specific antisynthetase drug

M Sassanfar et al. Biochemistry. .

Abstract

We report here the cloning and primary structure of Mycobacterium tuberculosis isoleucyl-tRNA synthetase. The predicted 1035-amino acid protein is significantly more similar in sequence to eukaryote cytoplasmic than to other eubacterial isoleucyl-tRNA synthetases. This similarity correlates with the enzyme being resistant to pseudomonic acid A, a potent inhibitor of Escherichia coli and other eubacterial isoleucyl-tRNA synthetases, but not of eukaryote cytoplasmic enzymes. Consistent with its eukaryote-like features, and unlike E. coli isoleucyl-tRNA synthetase, the M. tuberculosis enzyme charged yeast isoleucine tRNA. In spite of these eukaryote-like features, M. tuberculosis isoleucyl-tRNA synthetase exhibited highly specific cross-species aminoacylation, as demonstrated by its ability to complement isoleucyl-tRNA synthetase-deficient mutants of E. coli. When introduced into a pseudomonic acid-sensitive wild-type strain of E. coli, the M. tuberculosis enzyme conferred trans-dominant resistance to the drug. The results demonstrate that the sequence of a tRNA synthetase could have predictive value with respect to the interaction of that synthetase with a specific inhibitor. The results also demonstrate that mobilization of a pathogen's gene for a drug-resistant protein target can spread resistance to other, normally drug-sensitive pathogens infecting the same host.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources