Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Sep;137(9):3756-61.
doi: 10.1210/endo.137.9.8756543.

P2-purinoreceptor evoked changes in intracellular calcium oscillations in single isolated human granulosa-lutein cells

Affiliations

P2-purinoreceptor evoked changes in intracellular calcium oscillations in single isolated human granulosa-lutein cells

P S Lee et al. Endocrinology. 1996 Sep.

Abstract

In this study, we have demonstrated that P2-purinoreceptor agonists evoke oscillatory intracellular calcium ([Ca2+]i) responses in human granulosa-lutein cells (GLCs). Intracellular calcium was measured using microspectrofluorimetric techniques. ATP at concentrations of 1-100 microM increased [Ca2+]i, whereas neither adenosine nor AMP evoked changes in [Ca2+]i. The nonhydrolysable ATP analogue, ATP gamma S, also elevated [Ca2+]i with an efficacy similar to that of ATP, indicating that the changes in Ca2+ were not due to ATP hydrolysis, but that human GLCs possess functional P2-purinoreceptors. Uridine triphosphate (UTP) was equipotent to ATP at stimulating [Ca2+]i, and both ATP and UTP were consistently more effective at eliciting a response than ADP, suggesting that human GLCs possess the P2U class of purinergic receptors (ATP = UTP > > ADP > > AMP = adenosine). We have demonstrated that the purinergic agonist-induced changes in [Ca2+]i involve both Ca2+ influx and Ca2+ mobilization from cytosolic stores. Prolonged ATP treatment in Ca(2+)-free buffer (1 mM EGTA) still evokes transient oscillatory changes in [Ca2+]i in a pertussis toxin-insensitive manner. In Ca(2+)-containing conditions, the sustained phase of the response was generally unaffected by verapamil (10 microM), suggesting that influx is not occurring through voltage-dependent Ca(2+)-channels. These findings are consistent with the hypothesis that ATP and other P2-purinergic receptor agonists elicit changes in [Ca2+]i in human ovarian cells and that these events are initiated by the release of Ca2+ from cytosolic stores, and sustained by extracellular calcium ([Ca2+]e) influx. This is the first time that oscillatory patterns of [Ca2+]i have been reported in human GLCs.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources