Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Aug 13;35(32):10517-28.
doi: 10.1021/bi960763s.

Identifying and characterizing a structural domain of protein disulfide isomerase

Affiliations

Identifying and characterizing a structural domain of protein disulfide isomerase

N J Darby et al. Biochemistry. .

Abstract

Protein disulfide isomerase (PDI) appears on the basis of its primary structure to be a multidomain protein, but the number and nature of the domains has been uncertain. Two of the domains, a and a', which are homologous to thioredoxin and active in catalysis of disulfide bond formation, have been identified and characterized previously. Sections of the N-terminal half of the PDI sequence have been expressed and the limits of their folded structures delineated by limited proteolysis. In addition to the a-domain, the boundaries of a domain with no activity on thiol/disulfide groups, designated b, have been identified. This domain has been produced independently; its cooperative unfolding transition and its CD and NMR spectra confirm that it is an autonomously folded structure in isolation and when part of PDI. Fusion of the b-domain to the a-domain, as occurs naturally in the first half of PDI, did not alter substantially the catalytic activity of the a-domain. It still catalyzes only a subset of the thiol/disulfide exchange reactions of intact PDI and has a reduced ability to catalyze protein disulfide rearrangements. The a- and b-domains account structurally for virtually all of the first half of the PDI polypeptide chain, and it is very unlikely that there exists a proposed third domain homologous to the estrogen receptor. The b-domain exhibits some sequence homology to calsequestrin, a calcium binding protein from the sarcoplasmic reticulum of muscle.

PubMed Disclaimer

LinkOut - more resources