Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1996;59(9):739-52.
doi: 10.1016/0024-3205(96)00360-8.

Effects of SCN substitution for Cl- on tension, [Ca2+]i, and ionic currents in vascular smooth muscle

Affiliations
Comparative Study

Effects of SCN substitution for Cl- on tension, [Ca2+]i, and ionic currents in vascular smooth muscle

P R Standley et al. Life Sci. 1996.

Abstract

Substitution of thiocyanate ions (SCN-) for chloride ions (Cl-) in the extracellular medium of aortic rings and strips causes a biphasic contractile response; initial relaxation followed by sustained contraction. Alterations in these responses are sex-specific, and may elucidate fundamental differences in vascular function between males and females. In order to investigate the role of changes in intracellular Ca2+ ([Ca2+]i) in these changes in tension, we investigated effects of SCN- on [Ca2+]i and ionic currents in vascular smooth muscle cells (VSMC). Extracellular substitution of SCN- for Cl- caused a biphasic change in [Ca2+]i. Initially, [Ca2+]i decreased, reaching a minimum within 1-2 min, subsequently returned to original levels within 4-5 min, and then increased to a higher plateau over the next 10 minutes. This pattern of change in [Ca2+]i is identical to the pattern of tension changes in aortic rings, but it occurs somewhat faster. Partial substitution of SCN- for Cl- elicited increased, but no preceding decrease in [Ca2+]i. In the absence of external Ca2+, anion substitution elicited the decrease in [Ca2+]i but not the subsequent increase. Verapamil (1 microM) blocked the increased [Ca2+]i phase but not the decreased [Ca2+]i phase; whereas, R+ verapamil (up to 5 microM for 20 min), an inactive enantiomer, caused no change. Ionic current measurements obtained using whole cell patch and current clamp techniques revealed two responses to anion substitution: (a) a rapid, transient outward shift in holding current, and (b) a sustained increase in peak current and a hyperpolarizing shift in voltage sensitivity of Ca2+ channels. The calcium channel blocker PN200-110 blocked SCN(-)-enhanced current but had no effect on the changes in holding current. S- verapamil, but not R+ verapamil, reduced SCN(-)-enhanced current. In current clamp mode, SCN- caused an initial hyperpolarization followed by a slow depolarization punctuated by spikes. Thus, SCN- causes changes in vascular smooth muscle [Ca2+]i that could underlie both phases of its effects on tension in isolated aortas and may be explained by the following model: an initial outward shift in current causes hyperpolarization with a consequent decrease in cell excitability, and the somewhat slower increase in Ca2+ channel excitability eventually leads to enhanced calcium influx and tension. These data shed light on possible mechanisms underlying gender-related differences in VSMC physiology.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources