Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Aug;70(8):5051-60.
doi: 10.1128/JVI.70.8.5051-5060.1996.

Mechanisms of herpes simplex virus type 1 reactivation

Affiliations

Mechanisms of herpes simplex virus type 1 reactivation

W P Halford et al. J Virol. 1996 Aug.

Abstract

Primary cultures of trigeminal ganglion (TG) cells from herpes simplex virus type 1 (HSV-1) latently infected mice were used to study reactivation. Expression of HSV-1 latency-associated transcripts was noted in TG cell cultures. Infectious virus appeared in 75% of culture supernatants within 120 h after heat stress. Likewise, HSV-1 lytic-phase mRNA and proteins were detectable 24 h after heat stress. HSV-1 antigen first appeared in neurons after heat stress, indicating the neurons were the source of reactivation. The effect of heat stress duration on reactivation was determined. Reactivation occurred in 0, 40, or 67% of cultures after a 1-, 2-, or 3-h heat stress, respectively. However, 72-kDa heat shock protein expression was induced regardless of heat stress duration. Thus, reactivation was not a direct result of inducing the heat shock response. The capacities of several drugs to induce reactivation were also evaluated. While neither epinephrine, forskolin, nor a membrane-permeable cyclic AMP analog induced reactivation, dexamethasone did so in a dose-dependent manner. Furthermore, dexamethasone pretreatment enhanced the kinetics of heat stress-induced reactivation from TG cells. Collectively, the results indicate that TG cell cultures mimic important aspects of in vivo latency and reactivation. Therefore, this model may be useful for studying signalling pathways that lead to HSV-1 reactivation.

PubMed Disclaimer

References

    1. Arch Virol. 1992;122(1-2):207-14 - PubMed
    1. J Biol Chem. 1991 Sep 25;266(27):17959-65 - PubMed
    1. J Virol. 1992 Apr;66(4):2484-90 - PubMed
    1. Virology. 1992 May;188(1):311-8 - PubMed
    1. FASEB J. 1992 May;6(8):2524-9 - PubMed

Publication types