Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Jun;270(6 Pt 1):L898-906.
doi: 10.1152/ajplung.1996.270.6.L898.

Inhibition of alveolar type II cell ATP and surfactant synthesis by nitric oxide

Affiliations

Inhibition of alveolar type II cell ATP and surfactant synthesis by nitric oxide

I Y Haddad et al. Am J Physiol. 1996 Jun.

Abstract

Alveolar type II (ATII) cells, are often exposed to increased concentration of endogenous and exogenous nitric oxide (.NO). Exposure of freshly isolated rat ATII cells for 2 h to 1-3 microM .NO, generated by S-nitroso-N-penicillamine (SNAP), spermine NONOate, or 3-morpholino-sydnonimine (SIN-1) in the presence of superoxide dismutase, resulted in approximately 60% decrease in the rate of surfactant synthesis, as measured by the rate of incorporation of [methyl-3H]choline into phosphatidylcholine, and 60-80% inhibition of cellular ATP levels, as determined by bioluminescence. Similar results were obtained after incubation of ATII cells with authentic peroxynitrite (0.5 mM) but not SIN-1, a putative generator of peroxynitrite. Addition into the medium of oxyhemoglobin (20 microM), which scavenged .NO, or enhancement of ATII glutathione levels by preincubation with glutathione ester (5 mM) totally prevented the NONOate (100 microM) inhibition of cellular ATP. In contrast to the in vitro findings, normal levels of ATP and lipid synthesis were measured in ATII cells isolated from the lungs of rats that breathed .NO gas (80 ppm) in 21% O2 for 2 h (n = 4). This lack of effect may be due either to the presence of various antioxidants (such as glutathione) in the epithelial lining fluid or to the relatively low concentrations of .NO reaching the alveolar epithelium. We conclude that .NO and peroxynitrite, at concentrations likely to be encountered in vivo during inflammation, decrease ATII cell energy stores and surfactant synthesis, which may lead to derangement of important physiological functions.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources