Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Aug;134(4):985-1001.
doi: 10.1083/jcb.134.4.985.

Breaking the connection: displacement of the desmosomal plaque protein desmoplakin from cell-cell interfaces disrupts anchorage of intermediate filament bundles and alters intercellular junction assembly

Affiliations

Breaking the connection: displacement of the desmosomal plaque protein desmoplakin from cell-cell interfaces disrupts anchorage of intermediate filament bundles and alters intercellular junction assembly

E A Bornslaeger et al. J Cell Biol. 1996 Aug.

Abstract

The desmosomal plaque protein desmoplakin (DP), located at the juncture between the intermediate filament (IF) network and the cytoplasmic tails of the transmembrane desmosomal cadherins, has been proposed to link IF to the desmosomal plaque. Consistent with this hypothesis, previous studies of individual DP domains indicated that the DP COOH terminus associates with IF networks whereas NH2-terminal sequences govern the association of DP with the desmosomal plaque. Nevertheless, it had not yet been demonstrated that DP is required for attaching IF to the desmosome. To test this proposal directly, we generated A431 cell lines stably expressing DP NH2-terminal polypeptides, which were expected to compete with endogenous DP during desmosome assembly. As these polypeptides lacked the COOH-terminal IF-binding domain, this competition should result in the loss of IF anchorage if DP is required for linking IF to the desmosomal plaque. In such cells, a 70-kD DP NH2-terminal polypeptide (DP-NTP) colocalized at cell-cell interfaces with desmosomal proteins. As predicted, the distribution of endogenous DP was severely perturbed. At cell-cell borders where endogenous DP was undetectable by immunofluorescence, there was a striking absence of attached tonofibrils (IF bundles). Furthermore, DP-NTP assembled into ultrastructurally identifiable junctional structures lacking associated IF bundles. Surprisingly, immunofluorescence and immunogold electron microscopy indicated that adherens junction components were coassembled into these structures along with desmosomal components and DP-NTP. These results indicate that DP is required for anchoring IF networks to desmosomes and furthermore suggest that the DP-IF complex is important for governing the normal spatial segregation of adhesive junction components during their assembly into distinct structures.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Cell. 1995 Apr 21;81(2):233-43 - PubMed
    1. Exp Cell Res. 1995 May;218(1):359-69 - PubMed
    1. Curr Opin Cell Biol. 1995 Feb;7(1):118-25 - PubMed
    1. Proc Natl Acad Sci U S A. 1995 May 23;92(11):5067-71 - PubMed
    1. J Cell Biol. 1995 Jun;129(6):1677-89 - PubMed

Publication types

MeSH terms

Associated data