Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Jan;70(1):84-96.
doi: 10.1016/S0006-3495(96)79551-6.

A Monte Carlo simulation study of protein-induced heat capacity changes and lipid-induced protein clustering

Affiliations

A Monte Carlo simulation study of protein-induced heat capacity changes and lipid-induced protein clustering

T Heimburg et al. Biophys J. 1996 Jan.

Abstract

Monte Carlo simulations were used to describe the interaction of peripheral and integral proteins with lipids in terms of heat capacity profiles and protein distribution. The simulations were based on a two-state model for the lipid, representing the lipid state as being either gel or fluid. The interaction between neighboring lipids has been taken into account through an unlike nearest neighbor free energy term delta omega, which is a measure of the cooperativity of the lipid transition. Lipid/protein interaction was considered using the experimental observation that the transition midpoints of lipid membranes are shifted upon protein binding, a thermodynamic consequence of different binding constants of protein with fluid or gel lipids. The difference of the binding free energies was used as an additional parameter to describe lipid-protein interaction. The heat capacity profiles of lipid/protein complexes could be well described for both peripheral and integral proteins. Binding of proteins results in a shift and an asymmetric broadening of the melting profile. The model results in a coexistence of gel and fluid lipid domains in the proximity of the thermotropic transition. As a consequence, bound peripheral proteins aggregate in the temperature range of the lipid transition. Integral proteins induce calorimetric melting curves that are qualitatively different from that of peripheral proteins and aggregate in either gel or liquid crystalline lipid phase. The results presented here are in good agreement with calorimetric experiments on lipid-protein complexes and have implementations for the functional control of proteins.

PubMed Disclaimer

References

    1. Biochim Biophys Acta. 1989 Oct 16;985(2):229-32 - PubMed
    1. Biochemistry. 1987 Aug 25;26(17):5283-93 - PubMed
    1. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3403-7 - PubMed
    1. Biochemistry. 1994 Jun 7;33(22):6850-8 - PubMed
    1. Biochemistry. 1994 Aug 16;33(32):9477-88 - PubMed

Publication types