Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Jan;17(1):41-9.

Techniques for reducing interventional neuroradiologic skin dose: tube position rotation and supplemental beam filtration

Affiliations

Techniques for reducing interventional neuroradiologic skin dose: tube position rotation and supplemental beam filtration

A M Norbash et al. AJNR Am J Neuroradiol. 1996 Jan.

Abstract

Purpose: To limit the side effects of interventional neuroradiologic radiation, such as epilation, by applying a technique involving tube position rotation and by adding a supplemental inexpensive primary beam filter; and to show the dose effect of modifying technical factors.

Methods: Combined skin dose from fluoroscopy and digital subtraction angiography was measured with an array of 16 thermoluminescent dosimeters during interventional neuroradiologic procedures in 12 control subjects, in 18 patients whose procedures included addition of an inexpensive primary beam filter (0.5 mm aluminum/0.076 mm copper), and in 10 patients in whom the tube position was rotated, additional primary beam filtration was used, and close attention was paid to technique.

Results: Maximum thermoluminescent dosimetric measurements obtained with existing machine filtration ranged from 0.31 to 2.70 Gy in the control group (mean, 1.51 +/- 0.88); 0.25 to 2.42 Gy in the group with additional filtration alone (mean 0.96 + 0.64; average dose reduction, 36%); and 0.13 to 1.23 Gy in the group with additional filtration, tube position rotation, and close attention to technique (mean, 0.58 +/- 0.34; average dose reduction, 63%). Differences were statistically significant.

Conclusions: Greater than 50% skin dose reductions were documented during interventional neuroradiologic procedures by combining tube position rotation, supplemental primary beam filtration, and technical modifications.

PubMed Disclaimer

LinkOut - more resources