Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Jan;49(1):181-9.
doi: 10.1038/ki.1996.25.

Effect of reactive oxygen species on endothelin-1 production by human mesangial cells

Affiliations

Effect of reactive oxygen species on endothelin-1 production by human mesangial cells

A K Hughes et al. Kidney Int. 1996 Jan.

Abstract

Reactive oxygen species (ROS) have been implicated in the pathophysiology of renal ischemia/reperfusion injury. Endothelin-1 (ET-1) is generated in abundance in renal ischemia/reperfusion with resultant decreases in renal blood flow and glomerular filtration rate. To determine if ROS regulate ET-1 production, the effect of ROS donors or scavengers on ET-1 protein and mRNA levels in cultured human mesangial cells was examined. Incubation with xanthine/xanthine oxidase, glucose oxidase, or H2O2 caused a dose-dependent rise in ET-1 release. Similarly, xanthine/xanthine oxidase or H2O2 augmented ET-1 mRNA levels. In contrast, the ROS scavengers dimethylthiourea (DMTU), dimethylpyrroline N-oxide, or pyrrolidine dithiocarbamate reduced basal ET-1 release, while DMTU lowered ET-1 mRNA levels. Deferoxamine, an iron chelator, also decreased basal ET-1 release. Superoxide dismutase potentiated the ET-1 stimulatory effect of xanthine/xanthine oxidase, while catalase abrogated the effect of xanthine/xanthine oxidase and H2O2. The effects of ROS were unrelated to changes in nitric oxide production or cytotoxicity. These data indicate that exogenously or endogenously-derived ROS can increase ET-1 production by human mesangial cells. While superoxide anion reduces ET-1 levels, H2O2 leads to enhanced production of the peptide. ROS stimulation of mesangial cell ET-1 production may contribute to impaired glomerular hemodynamics in the setting of renal ischemia/reperfusion injury.

PubMed Disclaimer

Publication types

LinkOut - more resources