Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1996 Jan;270(1 Pt 1):C148-59.
doi: 10.1152/ajpcell.1996.270.1.C148.

Calcium sparks and [Ca2+]i waves in cardiac myocytes

Affiliations
Comparative Study

Calcium sparks and [Ca2+]i waves in cardiac myocytes

H Cheng et al. Am J Physiol. 1996 Jan.

Abstract

Local elevations in intracellular calcium ("Ca2+ sparks") in heart muscle are elementary sarcoplasmic reticulum (SR) Ca(2+)-release events. Ca2+ sparks occur at a low rate in quiescent cells but can also be evoked by electrical stimulation of the cell to produce the cell-wide Ca2+ transient. In this study we investigate how Ca2+ sparks are related to propagating waves of elevated cytosolic Ca2+ induced by "Ca2+ overload." Single ventricular myocytes from rat were loaded with the Ca(2+)-sensitive indicator fluo 3 and imaged with a confocal microscope. After extracellular Ca2+ concentration was increased from 1 to 10 mM to produce Ca2+ overload, the frequency of spontaneous Ca2+ sparks, which occur at the t tubule/SR junction, increased approximately 4-fold, whereas the spark amplitude and spatial size increased 4.1-and 1.7-fold, respectively. In addition, a spectrum of larger subcellular events, including propagating Ca2+ waves, was observed. Ca2+ sparks were seen to occur at the majority (65%) of the sites of wave initiation. For slowly propagating Ca2+ waves, discrete Ca(2+)-release events, similar to Ca2+ sparks, were detected in the wave front. These Ca2+ sparks appeared to recruit other sparks along the wave front so that the wave progressed in a saltatory manner. We conclude that Ca2+ sparks are elementary events that can explain both the initiation and propagation of Ca2+ waves. In addition, we show that Ca2+ waves and electrically evoked Ca2+ transients have the same time course and interact with each other in a manner that is consistent with both phenomena having the same underlying mechanism(s). These results suggest that SR Ca2+ release during Ca2+ waves, like that during normal excitation-contraction coupling, results from the spatial and temporal summation of Ca2+ sparks.

PubMed Disclaimer

Publication types

LinkOut - more resources