Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995;107(2):197-204.
doi: 10.1007/BF00230041.

Calcium-dependent, slowly inactivating potassium currents in cultured neurons of rat neocortex

Affiliations

Calcium-dependent, slowly inactivating potassium currents in cultured neurons of rat neocortex

B Hamon et al. Exp Brain Res. 1995.

Abstract

Slowly inactivating outward currents were examined in neurons from rat anterior cortex dissociated at postnatal day 1 and recorded after 7-48 days in vitro by the use of whole-cell patch-clamp technique, in the presence of 0.5-0.8 microM tetrodotoxin (TTX). 50 microM carbachol and 1-5 mM CsCl2. Experiments were often carried out in the additional presence of 1-5 mM CsCl2, which blocks the anomalous, inwardly rectifying IQ, the fast Ca(2+)-dependent K+ current (IC), and 50 microM carbachol, which depresses the IM current. These currents were evoked by depolarizing steps to -40 +/- 5 mV from a conditioning hyperpolarization to -110 +/- 10 mV. Their sensitivity to elevation from 2.5 to 12.5 mM in extracellular K+ concentration, together with their sensitivity to 5-15 mM tetraethylammonium, suggests that they are mainly carried by K+ ions. Their activation and inactivation curves show that the threshold for activation is -65 mV, that their inactivation is achieved at -75 mV and that potentials more negative than -120 mV are needed to abolish it. The time-dependence of de-inactivation gives a maximal current amplitude for conditioning hyperpolarizations of 2 s and is best described by a monoexponential function with a time constant of 0.7 s. Slow transient K+ currents were depressed by low doses of 4-aminopyridine (30-100 microM), which indicates the occurrence of an ID-type component in the recorded K+ currents. No slowly declining K+ current was expressed when a recording solution containing 10 mM 1,2-bis (2-aminophenoxy)ethane-N,N,N'-N'-tetraacetic acid (BAPTA), instead of 1-5 mM BAPTA, was used. When recorded without Ca2+ chelator in the pipette, slowly declining K+ currents were blocked by bath-applied 40-50 microM BAPTA-aminoethoxy, revealing a large-amplitude, rapidly inactivating outward current. This residual component is insensitive to 50 microM 4-aminopyridine and may include a current more related to the IA-type. Our data provide evidence that, in cultured cortical neurons from rat, the expression of an ID-like K+ current is highly dependent on internal Ca2+ concentration.

PubMed Disclaimer

Similar articles

References

    1. J Physiol. 1985 Jan;358:109-29 - PubMed
    1. J Neurophysiol. 1973 Jan;36(1):61-78 - PubMed
    1. J Physiol. 1984 Nov;356:115-33 - PubMed
    1. J Neurophysiol. 1980 Mar;43(3):651-668 - PubMed
    1. Pflugers Arch. 1987 Sep;410(1-2):102-11 - PubMed

MeSH terms

LinkOut - more resources