Analysis of the mRNA cap-binding ability of human eukaryotic initiation factor-4E by use of recombinant wild-type and mutant forms
- PMID: 8774702
- DOI: 10.1111/j.1432-1033.1996.0597u.x
Analysis of the mRNA cap-binding ability of human eukaryotic initiation factor-4E by use of recombinant wild-type and mutant forms
Abstract
In order to identify the amino acid residues necessary for the selective recognition of the mRNA cap structure by human eukaryotic initiation factor-4E (eIF-4E), which plays a central role in the first step of mRNA translation, we prepared recombinant wild-type and fourteen mutant forms and compared their cap-binding abilities by affinity chromatography. By the direct expression of a synthetic gene encoding human eIF-4E as the soluble form in Escherichia coli and the application on a 7-methylguanosine-5'-triphosphate-Sepharose 4B cap affinity column, pure recombinant eIF-4E was prepared; the optimum pH for the binding of the mRNA cap was 7.5. Among the amino acid residues conserved among various eIF-4E species, each of 14 functional residues was replaced with a nonpolar amino acid (alanine or leucine). All mutant eIF-4E genes, which were constructed by site-directed mutagenesis, were expressed in the same way as the wild type, and their cap-binding abilities were compared with that of the wild type. Consequently, all eight tryptophan residues. Glu103, and two histidine residues at positions 37 and 200 in human recombinant eIF-4E were suggested to be important for the recognition of the mRNA cap structure through direct interaction and/or indirect contributions. Indirect contributions included the construction of the overall protein structure, especially the cap-binding pocket.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous
