Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Feb;9(2):262-73.
doi: 10.1183/09031936.96.09020262.

Respiratory mechanics in patients ventilated for critical lung disease

Affiliations
Free article

Respiratory mechanics in patients ventilated for critical lung disease

L Beydon et al. Eur Respir J. 1996 Feb.
Free article

Erratum in

  • Eur Respir J 1997 Nov;10(11):2692

Abstract

Respiratory mechanics, using flow interruption, was previously studied during the complete breath in healthy ventilated man, numerical techniques relieving constraints regarding flow pattern. The classical linear model of non-Newtonian behaviour was found to be valid. The present study was extended to subjects with critical lung disease. Subjects with acute lung injury (ALI; n = 2), acute respiratory distress syndrome (ARDS; n = 4), and chronic obstructive pulmonary disease (COPD; n = 3) were studied with and without positive end-expiratory pressure (PEEP). Functional residual capacity (FRC) was measured with sulphur hexafluoride (SF6) wash-out. The static pressure-volume (P-V) curve was linear at zero end-expiratory pressure (ZEEP), but nonlinear at PEEP. Its hysteresis was nonsignificant. In ALI/ARDS, PEEP increased lung volume by distension and recruitment, but only by distension in COPD. In ALI/ARDS, resistance was increased, at ZEEP. In COPD, resistance became extremely high during expiration at ZEEP. In ALI/ARDS at ZEEP, non-Newtonian behaviour, representing tissue stress relaxation and pendel-luft, complied with the classical linear model. At PEEP, the non-Newtonian compliance became volume-dependent to an extent correlated to the nonlinearity of the static P-V curve. In COPD, non-Newtonian behaviour was adequately explained only with a model with different inspiratory and expiratory behaviour. The classical model of the respiratory system is valid in ALI/ARDS at ZEEP. More advanced models are needed at PEEP and in COPD.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources