Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Apr;39(4):391-400.
doi: 10.1007/BF00400670.

Pulsatile intravenous insulin replacement in streptozotocin diabetic rats is more efficient than continuous delivery: effects on glycaemic control, insulin-mediated glucose metabolism and lipolysis

Affiliations

Pulsatile intravenous insulin replacement in streptozotocin diabetic rats is more efficient than continuous delivery: effects on glycaemic control, insulin-mediated glucose metabolism and lipolysis

S J Koopmans et al. Diabetologia. 1996 Apr.

Abstract

Short-term exposure of tissues to pulses of insulin generally leads to an enhancement of insulin action. We have investigated the possible beneficial effects of long-term near-physiological continuous vs pulsatile intravenous insulin treatment of insulin-deficient streptozotocin (70 mg/kg) diabetic rats on blood glucose control, in vivo insulin action and in vitro insulin action in isolated adipocytes. First, we determined the 24-h peripheral plasma insulin profiles in normal rats under precisely controlled mealfeeding conditions. Basal plasma insulin levels (40 +/- 9 microU/ml) oscillate with a periodicity of 11.9 +/- 0.9 min (p < 0.05), and an amplitude of 60 +/- 10%. Subsequently, the 24-h insulin profile was mimicked in diabetic (D) rats by a continuous (c) or pulsatile (p) (6-min double, 6-min off) insulin infusion rate for 2 weeks, using a programmable pumpswivel unit. Control (C) rats received vehicle treatment. In Cc, Dc, Cp and Dp daily urinary glucose loss and average plasma glucose levels were 0 +/- 0, 7.5 +/- 4.4, 0 +/- 0, 0.8 +/- 0.4 mmol and 6.7 +/- 0.2, 11.5 +/- 2.7, 6.6 +/- 0.1, 5.9 +/- 1.4 mmol/l, respectively. Hypoglycaemia (< 3 mmol/l) was observed in 10 and 20% of the blood samples collected from Dc and Dp rats, respectively. After 2 weeks of treatment, in vivo peripheral and hepatic insulin action was measured by the hyperinsulinaemic euglycaemic (6 mmol/l) clamp with [3-3H]-glucose infusion. Pre-clamp counter-regulatory hormone levels were similar among rats. Compared to Cc and Cp, Dc showed a reduction in insulin sensitivity and responsiveness for peripheral glucose uptake whereas Dp only showed a reduction in insulin sensitivity. Suppression of hepatic glucose production by insulin was similar among rats. After 2.5 weeks of treatment, epididymal adipocytes were isolated. Specific [125I]-insulin binding, basal and insulin-stimulated [U-14C]-glucose uptake and isoproterenol-stimulated glycerol output were comparable among rat adipocytes. The inhibition of glycerol output by insulin was identical in Cp and Dp (V(max) = 48.6 +/- 6.1 and 42.3 +/- 4.6%) but blunted in Dc vs Cc (V(max) = 8.2 +/- 4.6 vs 44.0 +/- 7.2%, p < 0.01) adipocytes, suggesting a post-binding defect in the antilipolytic action of insulin in Dc rats. In conclusion, long-term near-physiological pulsatile intravenous insulin replacement in insulin-deficient diabetic rats is more efficient than continuous delivery in reducing blood glucose, lowering glucosuria, increasing insulin sensitivity and inhibiting lipolysis.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Diabetes. 1991 Mar;40(3):349-57 - PubMed
    1. Diabetes. 1988 Jan;37(1):81-8 - PubMed
    1. Am J Physiol. 1991 Jun;260(6 Pt 1):E825-32 - PubMed
    1. Endocrinology. 1989 Dec;125(6):3044-50 - PubMed
    1. Acta Endocrinol (Copenh). 1990 Jul;123(1):19-23 - PubMed

Publication types

MeSH terms

LinkOut - more resources