Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Aug 27;35(34):11081-4.
doi: 10.1021/bi960850k.

Lysine 2,3-aminomutase: rapid mix-freeze-quench electron paramagnetic resonance studies establishing the kinetic competence of a substrate-based radical intermediate

Affiliations

Lysine 2,3-aminomutase: rapid mix-freeze-quench electron paramagnetic resonance studies establishing the kinetic competence of a substrate-based radical intermediate

C H Chang et al. Biochemistry. .

Abstract

Lysine 2,3-aminomutase from Clostridia catalyzes the interconversion of L-lysine and L-beta-lysine. The enzyme contains iron-sulfur clusters and is activated by pyridoxal 5'-phosphate and S-adenosylmethionine, all of which participate in catalysis. Current spectroscopic evidence implicates two substrate-based organic radicals as intermediates in the mechanism. One of these species, the radical N3-(5'-phosphopyridoxylidene)-beta-lysin-2-yl (3), appears in the steady state of the reaction of lysine and has been definitively characterized by EPR and ESEEM spectroscopy. The 2-deuterio form of this radical, 3-2-d, which is generated in the reaction of L-[2-2H]lysine, can be distinguished by line shape analysis from 3. The rate at which the signal for 3-2-d is transformed into that for 3 has been measured by rapid mix-freeze quench kinetic analysis. The rate constant for this process is 24 +/- 8 s-1 at 21 degrees C. This is the rate constant for the turnover of radical 3 and is indistinguishable from the turnover number of lysine 2,3-aminomutase. Therefore, radical 3 is kinetically competent as an intermediate in the reaction of lysine 2,3-aminomutase.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources