Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Aug 23;225(3):801-7.
doi: 10.1006/bbrc.1996.1254.

Differential regulation of Src-family protein tyrosine kinases in GPI domains of T lymphocyte plasma membranes

Affiliations

Differential regulation of Src-family protein tyrosine kinases in GPI domains of T lymphocyte plasma membranes

S Arni et al. Biochem Biophys Res Commun. .

Abstract

The association of glycosylphosphatidylinositol (GPI)-anchored cell surface glycoproteins with Src-family protein tyrosine kinases was analysed in intact T lymphocyte plasma membranes. Following subcellular fractionation without detergent, 25% of the recovered plasma membranes were light density vesicles enriched in GPI-anchored glycoproteins and sphingolipids (GPI domains), while the remainder behaved as heavier density vesicles containing equal amounts of lipids and proteins. Qualitatively similar lipids were found in both vesicle types, but only light density vesicles made of 65-75% lipids yielded a Triton X-100 resistant, sedimentable fraction containing GPI-linked glycoproteins and sphingolipids. The GPI-rich vesicles phosphotyrosylated an exogenous substrate as efficiently as the denser vesicles, despite a low Lck and Fyn kinase content. Likewise, these kinases were more efficiently phosphorylated in GPI domains than in denser vesicles. GPI domains thus could constitute plasma membrane "hot spots" where associated Src kinases assume an optimally active conformation that contributes to signaling via GPI-anchored cell surface glycoproteins.

PubMed Disclaimer

Publication types

LinkOut - more resources