Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Aug 23;261(3):357-71.
doi: 10.1006/jmbi.1996.0469.

Ribosomal protein L9 interactions with 23 S rRNA: the use of a translational bypass assay to study the effect of amino acid substitutions

Affiliations

Ribosomal protein L9 interactions with 23 S rRNA: the use of a translational bypass assay to study the effect of amino acid substitutions

F M Adamski et al. J Mol Biol. .

Abstract

During translation of bacteriophage T4 gene 60 mRNA, ribosomes bypass 50 nucleotides with high efficiency. One of the mRNA signals for bypass is a stem-loop in the first part of the coding gap. When the length of this stem-loop is extended by 36 nucleotides, bypass is reduced to 0.35% of the wild-type level. Bypass is partially restored by a mutation in the C-terminal domain of Escherichia coli large ribosomal subunit protein L9. Previous work has shown that L9 is an elongated protein with an alpha-helix that connects and orients the N and C-terminal domains that both contain a predicted RNA binding site. We have determined two binding sites of L9 on 23 S rRNA. A 778 nucleotide RNA fragment encompassing domain V (nucleotides 1999 to 2776) of the 23 S rRNA is retained on filters by L9 and contains both sites. The N and C-terminal domains of L9 were shown to interact with nucleotides just 5' to nucleotide 2231 and 2179 of the 23 S rRNA, respectively, using the toeprint assay. These L9 binding sites on 23 S rRNA suggest that L9 functions as a brace across helix 76 to position helices 77 and 78 relative to the peptidyl transferase center. In this study, bypass on a mutant gene 60 mRNA has been used as an assay to probe the importance of particular L9 amino acids for function. Amino acid substitutions in the C-terminal domain are shown to partially restore bypass. These mutant L9 proteins have reduced binding to a 23 S rRNA fragment (nucleotides 1999 to 2274) containing domain V, to which L9 binds. They partially retain both the N and C-terminal domain interactions. On the other hand, substitutions of amino acids in the N-terminal domain, which greatly reduce RNA binding, do not restore bypass. The latter mutants have completely lost the N-terminal domain interaction. Addition of an amino acid to the alpha-helix also restores gene 60 bypass. RNA binding by this mutant is similar to that observed for the C-terminal domain mutants that partially restore bypass.

PubMed Disclaimer

Publication types

LinkOut - more resources