Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Jun 1;493 ( Pt 2)(Pt 2):425-45.
doi: 10.1113/jphysiol.1996.sp021394.

Voltage-dependent interaction of open-channel blocking molecules with gating of NMDA receptors in rat cortical neurons

Affiliations

Voltage-dependent interaction of open-channel blocking molecules with gating of NMDA receptors in rat cortical neurons

S M Antonov et al. J Physiol. .

Abstract

1. The mechanisms by which four adamantane derivatives (IEM-1857, -1592, -1460 and -1754) block the open NMDA-activated channel were studied at membrane voltages (Vm) from -170 to +30 mV. The rate constants of channel block (k+) and of channel unblock (k-) were measured from the fully resolvable flicker of single-channel currents induced by each compound. 2. The k+ of each compound exhibited a similar exponential dependence on voltage over the Vm range studied. 3. The k- of IEM-1857 and IEM-1592 over the Vm range studied, and of IEM-1754 and IEM-1460 from -30 to -90 mV, exhibited similar exponential dependencies on voltage. However, the k- of IEM-1754 and IEM-1460 at Vm values more hyperpolarized than -90 mV were much more steeply voltage dependent, suggesting that at these Vm values the two drugs can occupy a deeper binding site. 4. Each of the drugs induced a concentration-dependent prolongation of the mean burst length at -90 mV, suggesting that while blocking they can interfere with channel closure. 5. The prolongation of mean burst length induced by the largest drug (IEM-1857) increased with hyperpolarization. The increase was consistent at each Vm with the predictions of the sequential scheme of block, suggesting that channel closure is prevented when IEM-1857 is bound. The prolongation of burst length induced by the smallest drug (IEM-1754) was less than predicted by the sequential scheme and the deviation increased with hyperpolarization. 6. The IEM-1857 concentration-dependence of number of blockages per unit open time had a slope equal to k+ at -150 mV. The IEM-1754 concentration-dependence of number of blockages per unit open time revealed a slope about two times less than k+ for this compound at -150 mV. 7. The mean patch current was not significantly altered by 3 microM IEM-1857 at Vm values from -90 to -150 mV, as expected of a drug that prevents channel closure when blocking. Mean patch current significantly decreased with hyperpolarization beyond -90 mV in the presence of 1 microM IEM-1754. 8. The data suggest that there are two blocking sites at different depths within the NMDA-activated channel. Channel closure is prevented when any of the IEM drugs occupy the shallow blocking site. Channel closure is permitted during occupation of a deeper blocking site that can be reached only by the smaller IEM drugs at hyperpolarized voltages.

PubMed Disclaimer

References

    1. J Physiol. 1978 Apr;277:153-76 - PubMed
    1. J Gen Physiol. 1982 May;79(5):869-91 - PubMed
    1. J Physiol. 1983 Jun;339:663-78 - PubMed
    1. Nature. 1984 Feb 2-8;307(5950):462-5 - PubMed
    1. Proc Natl Acad Sci U S A. 1988 Feb;85(4):1307-11 - PubMed

Publication types

MeSH terms

LinkOut - more resources