Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Jun;18(4):289-94.
doi: 10.1016/1350-4533(95)00054-2.

Human head-neck biomechanics under axial tension

Affiliations

Human head-neck biomechanics under axial tension

N Yoganandan et al. Med Eng Phys. 1996 Jun.

Abstract

A significant majority of cervical spine biomechanics studies has applied the external loading in the form of compressive force vectors. In contrast, there is a paucity of data on the tensile loading of the neck structure. These data are important as the human neck not only resists compression but also has to withstand distraction due to factors such as the anatomical characteristics and loading asymmetry. Furthermore, evidence exists implicating tensile stresses to be a mechanism of cervical spinal cord injury. Recent advancements in vehicular restraint systems such as air bags may induce tension to the neck in adverse circumstances. Consequently, this study was designed to develop experimental methodologies to determine the biomechanics of the human cervical spinal structures under distractive forces. A part-to-whole approach was used in the study. Four experimental models from 15 unembalmed human cadavers were used to demonstrate the feasibility of the methodology. Structures included isolated cervical spinal cords, intervertebral disc units, skull to T3 preparations, and intact unembalmed human cadavers. Axial tensile forces were applied, and the failure load and distraction were recorded. Stiffness and energy absorbing characteristics were computed. Maximum forces for the spinal cord specimens were the lowest (278 N +/- 90). The forces increased for the intervertebral disc (569 N +/- 54). skull to T3 (1555 N +/- 459), and intact human cadaver (3373 N +/- 464) preparations, indicating the load-carrying capacities when additional components are included to the experimental model. The experimental methodologies outlined in the present study provide a basis for further investigation into the mechanism of injury and the clinical applicability of biomechanical parameters.

PubMed Disclaimer

Publication types

LinkOut - more resources