Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Sep;16(5):1005-13.
doi: 10.1097/00004647-199609000-00026.

NMDA Receptor-dependent increase of cerebral glucose utilization after hypoxia-ischemia in the immature rat

Affiliations

NMDA Receptor-dependent increase of cerebral glucose utilization after hypoxia-ischemia in the immature rat

E Gilland et al. J Cereb Blood Flow Metab. 1996 Sep.

Abstract

Post-treatment with the N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 reduces hypoxic-ischemic brain injury in immature animals. To elucidate possible mechanisms, cerebral glucose utilization (CMRglc) and cerebral blood flow (CBF) were measured 1-5 h after hypoxia-ischemia and administration of MK-801 in 7-day-old rats. After 100 min of unilateral hypoxia-ischemia, half of the pups were injected with MK-801. CMRglc was assessed by the [14C]deoxyglucose (2-DG) method. The brains were analyzed either by autoradiography or for energy metabolites and chromatographic separation of 2-DG-6-phosphate and 2-DG. CBF was measured by the autoradiographic [14C]iodoantipyrine method. Mean CMRglc in the cerebral cortex was increased ipsilaterally after hypoxia-ischemia to 15 +/- 3.3 mumol 100 g-1 min-1 (p < 0.01) and areas with CMRglc > 20 mumol 100 g-1 min-1 amounted to 8.0 +/- 7.7 mm2 in the ipsilateral hemisphere compared with 1.2 +/- 1.6 mm2 contralaterally (p < 0.001). Treatment with MK-801 decreased CMRglc bilaterally (p < 0.05) and reduced ipsilateral areas with increased CMRglc by 64% (p < 0.01). CBF was unaltered after hypoxia-ischemia and by MK-801 treatment. In conclusion, regional glucose hyperutilization in the parietal cortex after hypoxia-ischemia was attenuated by MK-801; this may have relevance to the neuroprotective effect of NMDA-receptor antagonists in this model.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources