Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995;72(1-2):51-7.
doi: 10.1007/BF00964114.

Oxygen cost of internal work during cycling

Affiliations

Oxygen cost of internal work during cycling

M P Francescato et al. Eur J Appl Physiol Occup Physiol. 1995.

Abstract

The energy cost of internal work and its relationships with lower limb mass and pedalling frequency were studied in four male subjects [age 22.2 (SD 1.5) years, body mass 81.0 (SD 5.1) kg, maximal O2 uptake (VO2max) above resting 3.06 (SD 0.4) l.min-1]. The subjects cycled at 40, 60, 80 and 100 rpm and at five different exercise intensities for every pedalling frequency (unloaded condition, UL); the same exercises were repeated after having increased the lower limbs' masses by 40% (loaded condition, L). The exercise intensities were chosen so that the oxygen consumption (VO2) did not exceed 75% of VO2max. For all the subjects and all the conditions, the rate of VO2 above resting increased linearly with the mechanical power (W). The y-intercepts of the linear regressions of VO2 on W, normalised per kilogram of overall lower limbs mass were the same in both UL and L and increased with the 4.165 power of pedalling frequency (fp). These intercepts were taken to represent the metabolic counterpart of the internal power dissipation in cycling; they amounted to 0.78, 0.34, 3.29 and 10.30 W.kg-1 for pedalling frequencies of 40, 60, 80 and 100 rpm respectively. The slope of the regression lines (delta W/delta VO2) represents the delta efficiency of cycle ergometer exercise; this was also affected by fp, ranging, on average, from 22.9% to 32.0%. These data allowed us to obtain a comprehensive description of the effects of fp (per minute), exercise intensity (W, watts) and lower limbs' mass with or without added loads (mL, kg), on VO2 (ml.min-1) during cycling: VO2 = [mL.(4.3.10(-8).fp4.165/0.35)] + (1/[(3.594.10(-5).fp2 - 0.003.fp + 0.326).0.35]).W. The mean percentage error between the VO2 predicted from this equation and the actual value was 12.6%. This equation showed that the fraction of the overall VO2 due to internal work, for a normal 70-kg subject pedalling at 60 rpm and 100 W was of the order of 0.2.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Eur J Appl Physiol Occup Physiol. 1985;53(4):339-42 - PubMed
    1. J Physiol. 1977 Jun;268(2):467--81 - PubMed
    1. Eur J Appl Physiol Occup Physiol. 1988;57(4):382-7 - PubMed
    1. J Appl Physiol. 1973 Sep;35(3):367-70 - PubMed
    1. Med Sci Sports Exerc. 1992 Mar;24(3):376-82 - PubMed

Publication types

LinkOut - more resources