Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1996 Sep 3;93(18):9493-8.
doi: 10.1073/pnas.93.18.9493.

Unifying theory of hypoxia tolerance: molecular/metabolic defense and rescue mechanisms for surviving oxygen lack

Affiliations
Review

Unifying theory of hypoxia tolerance: molecular/metabolic defense and rescue mechanisms for surviving oxygen lack

P W Hochachka et al. Proc Natl Acad Sci U S A. .

Abstract

We develop a unifying theory of hypoxia tolerance based on information from two cell level models (brain cortical cells and isolated hepatocytes) from the highly anoxia tolerant aquatic turtle and from other more hypoxia sensitive systems. We propose that the response of hypoxia tolerant systems to oxygen lack occurs in two phases (defense and rescue). The first lines of defense against hypoxia include a balanced suppression of ATP-demand and ATP-supply pathways; this regulation stabilizes (adenylates) at new steady-state levels even while ATP turnover rates greatly decline. The ATP demands of ion pumping are down-regulated by generalized "channel" arrest in hepatocytes and by "spike" arrest in neurons. Hypoxic ATP demands of protein synthesis are down-regulated probably by translational arrest. In hypoxia sensitive cells this translational arrest seems irreversible, but hypoxia-tolerant systems activate "rescue" mechanisms if the period of oxygen lack is extended by preferentially regulating the expression of several proteins. In these cells, a cascade of processes underpinning hypoxia rescue and defense begins with an oxygen sensor (a heme protein) and a signal-transduction pathway, which leads to significant gene-based metabolic reprogramming-the rescue process-with maintained down-regulation of energy-demand and energy-supply pathways in metabolism throughout the hypoxic period. This recent work begins to clarify how normoxic maintenance ATP turnover rates can be drastically (10-fold) down-regulated to a new hypometabolic steady state, which is prerequisite for surviving prolonged hypoxia or anoxia. The implications of these developments are extensive in biology and medicine.

PubMed Disclaimer

References

    1. J Biol Chem. 1993 Aug 5;268(22):16852-8 - PubMed
    1. Am J Physiol. 1996 Mar;270(3 Pt 2):R614-20 - PubMed
    1. J Biol Chem. 1994 Jun 10;269(23):16397-402 - PubMed
    1. Annu Rev Physiol. 1992;54:619-37 - PubMed
    1. J Exp Biol. 1995;198(Pt 6):1299-305 - PubMed

Publication types

LinkOut - more resources