Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994;2(3):159-79.
doi: 10.1080/10629369408029901.

Multivariate QSAR analysis of a skin sensitization database

Affiliations

Multivariate QSAR analysis of a skin sensitization database

M T Cronin et al. SAR QSAR Environ Res. 1994.

Abstract

There is a regulatory requirement for the potential of a new chemical to cause skin sensitization to be assessed. This requirement is presently fulfilled by the use of animal tests. In this study a data base of heterogeneous organic compounds from the guinea pig maximization test has been subjected to multivariate QSAR analysis. The compounds were described both by whole molecule parameters and structural features associated with likely sites of reactivity. Principal component analysis was applied to the data set and although it functions reasonably well to reduce the dimensionality of a large data matrix, it is only moderately useful as a predictive tool when descriptors were chosen rationally. Stepwise discriminant analysis produces a fourteen parameter model, of which twelve were structural features associated with reactivity. This however predicts only 82.6% of compounds correctly after cross validation. There is trend for the linear discriminant analysis model to predict compounds as non sensitizers, suggesting that the parameters incorporated were not wholly suitable for discriminating between the two classes. Another criticism of linear discriminant analysis is that it may be unable to cope with the likely embedded data structure. With this in mind, the structural alerts may be better employed in an expert system, to identify potential hazard, where they will not suffer the limitations of a statistical model.

PubMed Disclaimer

LinkOut - more resources