Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1996 May-Jun;28(5-6):551-5.
doi: 10.1016/0197-0186(95)00131-x.

Effects of ethanol on the incorporation of free fatty acids into cerebral membrane phospholipids

Affiliations
Comparative Study

Effects of ethanol on the incorporation of free fatty acids into cerebral membrane phospholipids

Z Zheng et al. Neurochem Int. 1996 May-Jun.

Abstract

Chronic ethanol exposure is known to affect deacylation-reacylation of membrane phospholipids (PL). In our earlier studies we have demonstrated that chronic exposure to ethanol (EtOH) leads to a progressive increase in membrane phospholipase A2 (PLA2) activity. In the current study, we investigated the effects of chronic EtOH exposure on the incorporation of different free fatty acids (FFAs) into membrane PL. The results suggest that the incorporation of fatty acids into four major PL varied from 9.6 fmol/min/mg protein for docosahexaenoic acid (DHA) into phosphatidylinositol (PI) to 795.8 fmol/min/mg protein for linoleic acid (LA) into phosphatidylcholine (PC). These results also suggest a preferential incorporation of DHA into PC; arachidonic acid (AA) into PI; oleic acid into phosphatidylethanolamine (PE) and PC;LA into PC and stearic acid into PE. Chronic EtOH exposure affected the incorporation of unsaturated fatty acid into PI, phosphatidylserine (PS) and PC. However, EtOH did not affect significantly the incorporation of any of the fatty acids (FA) studied into PE. No significant differences were observed with the stearic acid. It is suggested that acyltransferases may play an important role in the membrane adaptation to the injurious effects of EtOH.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources