Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 May 20;721(1-2):39-48.
doi: 10.1016/0006-8993(96)00134-5.

Rapid regulation of neurite outgrowth and retraction by phospholipase A2-derived arachidonic acid and its metabolites

Affiliations

Rapid regulation of neurite outgrowth and retraction by phospholipase A2-derived arachidonic acid and its metabolites

N R Smalheiser et al. Brain Res. .

Abstract

Arachidonic acid and lipoxygenase metabolites have been proposed to act as retrograde synaptic messengers and as early mediators of neuronal injury, but few studies have analyzed their roles in controlling neurite behavior within a time window of minutes to hours. Phospholipase A2 inhibitors (BPB, ONO-RS-082, quinacrine and AACOCF3) and the lipoxygenase inhibitor AA861 delayed the initial outgrowth of NG108-15 cell neurites on laminin. Inhibitors of diacylglycerol lipase (RHC 80267), cyclooxygenase (indomethacin) and free radicals (N-acetyl cysteine and vitamin E) did not produce similar effects. Phospholipase A2 and lipoxygenase inhibitors also prevented acute neurite retraction in response to lysophosphatidic acid and eight other agents tested, and decreased F-actin staining at cell margins. Conversely, exogenous arachidonic acid (1 microM) enhanced the responses of neurites in outgrowth and retraction assays. Phospholipase A2 and lipoxygenase pathways appear to have a general role in maintaining the ability of neurites to respond rapidly to external stimuli, possibly via regulating the ability of the cytoskeleton to remodel.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources