Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Sep;50(3):687-91.

Mercury binding site on Na+/K(+)-ATPase: a cysteine in the first transmembrane segment

Affiliations
  • PMID: 8794911

Mercury binding site on Na+/K(+)-ATPase: a cysteine in the first transmembrane segment

X Wang et al. Mol Pharmacol. 1996 Sep.

Abstract

Mercury is an element of great pharmacological and toxicological importance. It reacts with sulfhydryl groups on proteins to form mercaptides. Mercuric mercury (Hg2+), a form that shows primarily epithelial toxicity, can inhibit Na+/K(+)-ATPase at low concentration, but its molecular target site on the protein is not known. To investigate the interaction of Hg2+ with Na+/K(+)-ATPase, we studied the inhibition of Na+/K+ pump activity by inorganic mercury (HgCl2) in Xenopus laevis oocytes expressing wild-type and mutant forms of Na+/K(+)-ATPase. Na+/K+ pump potassium-activated current was inhibited with first-order kinetics (Kon = 7 x 10(3) M-1.sec-1) and an estimated Kd of < or = 170 nM. To study the hypothesis that the cysteine (C113) of the first transmembrane segment of the alpha subunit participates in a Hg2+ binding site, we investigated the inhibition of Na+/K+ pump activity produced by a 1-min exposure to 5 microM HgCl2. Wild-type and C113S and C113Y mutant Na+/K+ pumps were inhibited by 43 +/- 7%, 12 +/- 2%, and 5 +/- 3%, respectively. Because C113 is a component of the cardiac steroid binding site, we studied the interaction of mercury with strophanthidin by exposing oocytes for 2 min to 5 microM HgCl2 in the presence or absence of 50 microM strophanthidin. Strophanthidin reduced the inhibition by mercury from 68 +/- 5% to 30 +/- 7%. Based on the position of C113 in the first transmembrane segment, these results suggest that Hg2+ binding to C113 from the extracellular side is one of the mechanisms by which mercury inhibits Na+/K(+)-ATPase.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources