Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Apr;48(4):367-70.
doi: 10.1111/j.2042-7158.1996.tb05934.x.

Carboxymethylcellulose-sodium based transdermal drug delivery system for propranolol

Affiliations

Carboxymethylcellulose-sodium based transdermal drug delivery system for propranolol

R Krishna et al. J Pharm Pharmacol. 1996 Apr.

Abstract

Propranolol, a beta-adrenoceptor blocker, suffers from a high degree of first-pass metabolism resulting in very low bioavailability (< 10%) following administration with conventional oral formulations. To circumvent this significant therapeutic hurdle, we formulated a carboxymethylcellulose-sodium (CMC-Na) based transdermal system for propranolol and evaluated the patch for its in-vitro and in-vivo performance. In-vitro permeation studies using the excised hair-free rat skin model resulted in 66.54% permeation at the end of 24 h in a modified Franz diffusion cell. This zero-order permeation profile was characterized by a drug permeation rate of 52.87 +/- 11.63 micrograms cm-2 h-1. Skin irritation studies in rats (n = 5), evaluated for flare-and-wheal with respect to a formalin control, indicated that the drug-containing patch evoked only a mild response over a 7-day period. Preliminary in-vivo studies in male albino rabbits (n = 3), indicated that plasma drug levels averaged 11.75 +/- 3.40 ng mL-1 in a 24-h study period before patch removal.

PubMed Disclaimer

Publication types

LinkOut - more resources