Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Oct 4;271(40):24736-40.
doi: 10.1074/jbc.271.40.24736.

Identification of residues of spinach thioredoxin f that influence interactions with target enzymes

Affiliations
Free article

Identification of residues of spinach thioredoxin f that influence interactions with target enzymes

M K Geck et al. J Biol Chem. .
Free article

Abstract

The necessity for two types of thioredoxins (Trx f and m) within chloroplasts of higher plants that mediate the same redox chemistry with various target enzymes is not well understood. To approach this complex issue, we have applied site-directed mutagenesis to the identification of residues of Trx f that affect its binding to and selectivity for target enzymes. Based upon amino acid sequence alignments and the three-dimensional structure of Escherichia coli thioredoxin, putative key residues of Trx f were replaced with residues found at corresponding positions of Trx m to generate the mutants K58E, Q75D, N74D, and deletion mutants DeltaAsn-74 and DeltaAsn-77. Kinetics of activation of oxidized recombinant sorghum leaf NADP-dependent malate dehydrogenase and oxidized spinach chloroplastic fructose-1,6-bisphosphatase by wild-type Trx f, wild-type Trx m, and Trx f mutants were compared. All of the mutants are less efficient than wild-type Trx f in the activation of fructose-1,6-bisphosphatase and are altered in both S0.5 and Vmax. In contrast to literature reports, the activation of NADP-dependent malate dehydrogenase does not display rate saturation kinetics with respect to the concentration of Trx f, thereby signifying very weak interactions between the two proteins. The mutants of Trx f likewise interact only weakly with NADP-dependent malate dehydrogenase, but the apparent second-order rate constants for activation are increased compared to that with wild-type Trx f. Thus, Lys-58, Asn-74, Gln-75, and Asn-77 of Trx f contribute to its interaction with target enzymes and influence target protein selectivity.

PubMed Disclaimer

Publication types

LinkOut - more resources