On the photocycle and light adaptation of dark-adapted bacteriorhodopsin
- PMID: 880333
- PMCID: PMC1473311
- DOI: 10.1016/S0006-3495(77)85579-3
On the photocycle and light adaptation of dark-adapted bacteriorhodopsin
Abstract
Pulsed Nd laser (25 ns, 530 nm) photolysis experiments were carried out at room temperature in aqueous suspensions of dark- and light-adapted fragments of the purple membrane of Halobacterium halobium. It is shown that the (50%) 13-cis isomeric component (BR13-cis) of dark-adapted bacteriorhodopsin (BRDA) undergoes a photocycle involving a characteristic transient absorbing in the neighborhood of 610 nm. At relatively high excitation intensities BR13-cis is converted to the same 410 nm (M) transient that characterized the photocycle of the all-trans isomer (BRtrans) of light-adapted bacteriorhodopsin (BRLA). This process, which competes with the generation of the "610" species, is attributed to the photo-induced conversion, during the pulse, of BR13-cis (or of its primary photoproduct "X") to a species in the BRtrans photocyte. The relationship between these observations and the mechanism of BRDA hv leads to BRLA adaptation at low excitation intensities (for which a quantum yield limit, 0 less than or equal to (3.5 +/- 0.7) X 10(-2) , is established) is discussed.
Similar articles
-
Photoconversion from the light-adapted to the dark-adapted state of bacteriorhodopsin.Biophys J. 1985 Aug;48(2):201-8. doi: 10.1016/S0006-3495(85)83773-5. Biophys J. 1985. PMID: 4052558 Free PMC article.
-
Effect of high pressure on the absorption spectrum and isomeric composition of bacteriorhodopsin.Biophys J. 1980 Apr;30(1):149-57. doi: 10.1016/S0006-3495(80)85083-1. Biophys J. 1980. PMID: 7260262 Free PMC article.
-
On the primary quantum yields in the bacteriorhodopsin photocycle.Biophys J. 1976 Jul;16(7):839-43. doi: 10.1016/S0006-3495(76)85732-3. Biophys J. 1976. PMID: 938722 Free PMC article.
-
Bacteriorhodopsin and the purple membrane of halobacteria.Biochim Biophys Acta. 1979 Mar 14;505(3-4):215-78. doi: 10.1016/0304-4173(79)90006-5. Biochim Biophys Acta. 1979. PMID: 35226 Review. No abstract available.
-
The structural basis of the functioning of bacteriorhodopsin: an overview.FEBS Lett. 1979 Apr 15;100(2):219-24. doi: 10.1016/0014-5793(79)80338-5. FEBS Lett. 1979. PMID: 378693 Review. No abstract available.
Cited by
-
Microbial and animal rhodopsins: structures, functions, and molecular mechanisms.Chem Rev. 2014 Jan 8;114(1):126-63. doi: 10.1021/cr4003769. Epub 2013 Dec 23. Chem Rev. 2014. PMID: 24364740 Free PMC article. Review. No abstract available.
-
Conformational alterations in unidirectional ion transport of a light-driven chloride pump revealed using X-ray free electron lasers.Proc Natl Acad Sci U S A. 2022 Mar 1;119(9):e2117433119. doi: 10.1073/pnas.2117433119. Proc Natl Acad Sci U S A. 2022. PMID: 35197289 Free PMC article.
-
Photocycle of halorhodopsin from Halobacterium salinarium.Biophys J. 1995 May;68(5):2062-72. doi: 10.1016/S0006-3495(95)80385-1. Biophys J. 1995. PMID: 7612849 Free PMC article.
-
Effective light-induced hydroxylamine reactions occur with C13 = C14 nonisomerizable bacteriorhodopsin pigments.Biophys J. 1998 Jul;75(1):413-7. doi: 10.1016/S0006-3495(98)77526-5. Biophys J. 1998. PMID: 9649399 Free PMC article.
-
Pressure effects on the dark-adaptation of bacteriorhodopsin.Biophys J. 1993 Apr;64(4):1187-93. doi: 10.1016/S0006-3495(93)81484-X. Biophys J. 1993. PMID: 19431885 Free PMC article.
References
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous