Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1996 Sep;140(1):58-69.
doi: 10.1006/taap.1996.0197.

Formate-induced alterations in retinal function in methanol-intoxicated rats

Affiliations
Free article
Comparative Study

Formate-induced alterations in retinal function in methanol-intoxicated rats

J T Eells et al. Toxicol Appl Pharmacol. 1996 Sep.
Free article

Abstract

Formic acid is the toxic metabolite in methanol poisoning. Permanent visual damage in methanol-intoxicated humans and non-human primates has been associated with prolonged exposures (> 24 hr) to blood formate concentrations in excess of 7 mM; however, little information is available on the toxicity associated with chronic low-level or repeated exposure to methanol. The present studies compared the effects on retinal function and structure of rapidly increasing formate concentrations typical of acute methanol intoxication with low-level plateau formate concentrations more likely to be generated by subacute or chronic methanol exposure. Rats that accumulated formate concentrations of 8-15 mM developed metabolic acidosis, retinal dysfunction, and retinal histopathologic changes. Retinal dysfunction was measured as reductions in the a- and b-waves of the electroretinogram that occurred coincident with blood formate accumulation. Histopathologic studies revealed vacuolation in the retinal pigment epithelium and photoreceptor inner segments. Rats exposed to formate concentrations ranging from 4 to 6 mM for 48 hr showed evidence of retinal dysfunction in the absence of metabolic acidosis and retinal histopathology. These data indicate that formic acid generated from methanol oxidation acts as a direct retinal toxin. Formate-induced retinal dysfunction in methanol-intoxicated rats can be produced by steadily increasing concentrations of formate and importantly can also be produced by prolonged exposure to lower concentrations of formate. Our findings substantiate evidence based on clinical case reports and a small number of epidemiological studies and support the hypothesis that the visual system toxicity produced by acute, subacute, or chronic methanol poisoning share a common mechanism.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources