Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1996;43(1):19-24.

Microbial pathogenicity factors as parts of global regulatory networks. (A short review)

Affiliations
  • PMID: 8806939
Review

Microbial pathogenicity factors as parts of global regulatory networks. (A short review)

J Hacker. Acta Microbiol Immunol Hung. 1996.

Abstract

Pathogenic bacteria differ from non-pathogenic isolates by the expression of so-called virulence or pathogenicity factors, including adherence molecules, toxins, capsules and others. The majority of the genes encoding pathogenicity factors are not expressed constitutively, but rather undergo environmental regulation or random regulatory events. In enterobacteria, such virulence associated genes are often corregulated with determinants influencing metabolic properties. By analyzing the structure and regulation of genes which are essential for the urovirulence of pathogenic Escherichia coli, we were able to show that genes coding for alfa haemolysin, cytotoxic necrotizing factor I and P fimbriae are located on large instable DNA regions, termed "pathogenicity islands". These islands also comprise regulatory genes which are able to activate adherence specific genes that are not part of those islands. In addition, pathogenicity islands are associated with tRNA loci. One of these tRNA genes, which codes for a minor leucin tRNA and is therefore termed leuX, acts as a global regulator. It influences the expression of various genes of pathogenic E. coli, including adherence specific loci, enterobactin genes, flagella specific gene clusters and determinants involved in serum resistance.

PubMed Disclaimer

Similar articles

Publication types