Role of gyrA mutation and loss of OprF in the multiple antibiotic resistance phenotype of Pseudomonas aeruginosa G49
- PMID: 8807797
- DOI: 10.1111/j.1574-6968.1996.tb08456.x
Role of gyrA mutation and loss of OprF in the multiple antibiotic resistance phenotype of Pseudomonas aeruginosa G49
Abstract
A clinical isolate of Pseudomonas aeruginosa G48, became resistant during fluoroquinolone treatment giving rise to the post-therapy isolate, G49. To determine whether mutation in gyrA gave rise to fluoroquinolone resistance, G49 was transformed with a plasmid encoding gyrA (pNJR3-2); this reduced the MIC of fluoroquinolones for G49 two-fold. DNA sequencing of gyrA of G49 demonstrated a mutation at Thr-83, substituting with isoleucine. The outer membrane of G49 was shown to lack OprF, suggesting that loss of this protein may be involved in the multiple antibiotic resistance phenotype; however, when G49 was transformed with a plasmid encoding oprF (pRW5), expression of oprF was shown to have no effect upon the phenotype.
Similar articles
-
Development of multiple-antibiotic-resistant (Mar) mutants of Pseudomonas aeruginosa after serial exposure to fluoroquinolones.Antimicrob Agents Chemother. 1995 Feb;39(2):489-95. doi: 10.1128/AAC.39.2.489. Antimicrob Agents Chemother. 1995. PMID: 7726519 Free PMC article.
-
Mechanisms of quinolone resistance in clinical strains of Pseudomonas aeruginosa.Microb Drug Resist. 1998 Winter;4(4):257-61. doi: 10.1089/mdr.1998.4.257. Microb Drug Resist. 1998. PMID: 9988043
-
Detection of gyrA mutations among 335 Pseudomonas aeruginosa strains isolated in Japan and their susceptibilities to fluoroquinolones.Antimicrob Agents Chemother. 1999 Feb;43(2):406-9. doi: 10.1128/AAC.43.2.406. Antimicrob Agents Chemother. 1999. PMID: 9925546 Free PMC article.
-
Bacterial resistance to fluoroquinolones: lessons to be learned.Infection. 1994;22 Suppl 2:S140-7. doi: 10.1007/BF01793579. Infection. 1994. PMID: 7927833 Review.
-
Drug resistance of Pseudomonas aeruginosa with special reference to new quinolones.Antibiot Chemother (1971). 1991;44:209-14. doi: 10.1159/000420316. Antibiot Chemother (1971). 1991. PMID: 1801639 Review. No abstract available.
Cited by
-
Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria.Clin Microbiol Rev. 2006 Apr;19(2):382-402. doi: 10.1128/CMR.19.2.382-402.2006. Clin Microbiol Rev. 2006. PMID: 16614254 Free PMC article. Review.
-
Influence of a putative ECF sigma factor on expression of the major outer membrane protein, OprF, in Pseudomonas aeruginosa and Pseudomonas fluorescens.J Bacteriol. 1999 Aug;181(16):4746-54. doi: 10.1128/JB.181.16.4746-4754.1999. J Bacteriol. 1999. PMID: 10438740 Free PMC article.
-
The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria.Clin Microbiol Rev. 2015 Apr;28(2):337-418. doi: 10.1128/CMR.00117-14. Clin Microbiol Rev. 2015. PMID: 25788514 Free PMC article. Review.
-
Identification and characterisation of G-quadruplex DNA-forming sequences in the Pseudomonas aeruginosa genome.RSC Chem Biol. 2022 Nov 15;4(1):94-100. doi: 10.1039/d2cb00205a. eCollection 2023 Jan 4. RSC Chem Biol. 2022. PMID: 36685252 Free PMC article.
-
The Building Blocks of Antimicrobial Resistance in Pseudomonas aeruginosa: Implications for Current Resistance-Breaking Therapies.Front Cell Infect Microbiol. 2021 Apr 16;11:665759. doi: 10.3389/fcimb.2021.665759. eCollection 2021. Front Cell Infect Microbiol. 2021. PMID: 33937104 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources