Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Sep 1;318 ( Pt 2)(Pt 2):623-9.
doi: 10.1042/bj3180623.

Insulin and secretagogues differentially regulate fluid-phase pinocytosis in insulin-secreting beta-cells

Affiliations

Insulin and secretagogues differentially regulate fluid-phase pinocytosis in insulin-secreting beta-cells

G Xu et al. Biochem J. .

Abstract

The physiological role of the beta-cell insulin receptor is unknown. To evaluate a candidate function, the insulin regulation of fluid-phase pinocytosis was investigated in a clonal insulinoma cell line (beta TC6-F7) and, for comparison, also in Chinese hamster ovary cells transfected with the human insulin receptor (CHO-T cells). In CHO-T cells, the net rate of fluid-phase pinocytosis was rapidly increased 3-4-fold over the basal rate by 100 nM insulin, with half-maximal stimulation at 2 nM insulin, as assayed by cellular uptake of horseradish peroxidase from the medium. Wortmannin, an inhibitor of phosphatidylinositol (PI)-3-kinase, blocked insulin-stimulated pinocytosis with an IC50 of 7.5 nM without affecting the basal rate of pinocytosis. In insulin-secreting beta TC6-F7 cells, the secretagogues glucose and carbachol (at maximally effective concentrations of 15 mM and 0.5 mM respectively) augmented fluid-phase pinocytosis 1.65-fold over the basal rate. Wortmannin also inhibited secretagogue-stimulated pinocytosis in these beta-cells with an IC50 of 7 nM but did not affect the basal rate of pinocytosis measured in the absence of secretagogues. Wortmannin did not influence either basal or secretagogue-induced insulin secretion. Although these beta TC6-F7 cells have cell-surface insulin receptors, adding exogenous insulin or insulin-like growth factor 1 did not affect their rate of fluid-phase pinocytosis, either in the absence or presence of secretagogues. From these observations, we conclude that: (1) in both insulin-secreting beta-cells and in conventional, insulin-responsive CHO-T cells, a common, wortmannin-sensitive reaction, which probably involves PI-3-kinase, regulates fluid-phase pinocytosis; (2) the insulin-receptor signal transduction pathway is dissociated from the regulation of fluid-phase pinocytosis in the insulin-secreting beta-cell line we studied; and (3) the enhancement of fluid-phase pinocytosis associated with secretagogue-induced insulin release in beta TC6-F7 cells is not attributable to autocrine activation of beta-cell surface insulin receptors.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Nature. 1991 Jul 4;352(6330):73-7 - PubMed
    1. Diabetes. 1996 Jun;45(6):711-7 - PubMed
    1. Proc Soc Exp Biol Med. 1969 Feb;130(2):568-71 - PubMed
    1. Diabetes. 1971 Jan;20(1):1-9 - PubMed
    1. Science. 1973 Aug 10;181(4099):561-2 - PubMed

Publication types

MeSH terms