Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Jun;20(6):1273-86.
doi: 10.1111/j.1365-2958.1996.tb02646.x.

A novel DnaJ-like protein in Escherichia coli inserts into the cytoplasmic membrane with a type III topology

Affiliations

A novel DnaJ-like protein in Escherichia coli inserts into the cytoplasmic membrane with a type III topology

D J Clarke et al. Mol Microbiol. 1996 Jun.

Abstract

We describe a novel Escherichia coli protein, DjlA, containing a highly conserved J-region motif, which is present in the DnaJ protein chaperone family and required for interaction with DnaK. Remarkably, DjlA is shown to be a membrane protein, localized to the inner membrane with the unusual Type III topology (N-out, C-in). Thus, DjlA appears to present an extremely short N-terminus to the periplasm and has a single transmembrane domain (TMD) and a large cytoplasmic domain containing the C-terminal J-region. Analysis of the TMD of DjlA and recently identified homologues in Coxiella burnetti and Haemophilus influenzae revealed a striking pattern of conserved glycines (or rarely alanine), with a four-residue spacing. This motif, predicted to form a spiral groove in the TMD, is more marked than a repeating glycine motif, implicated in the dimerization of TMDs of some eukaryotic proteins. This feature of DjlA could represent a promiscuous docking mechanism for interaction with a variety of membrane proteins. DjlA null mutants can be isolated but these appear rapidly to accumulate suppressors to correct envelope and growth defects. Moderate (10-fold) overproduction of DjlA suppresses a mutation in FtsZ but markedly perturbs cell division and cell-envelope growth in minimal medium. We propose that DjlA plays a role in the correct assembly, activity and/or maintenance of a number of membrane proteins, including two-component signal-transduction systems.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources