Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1996 Apr;48(6):519-54.
doi: 10.1016/0301-0082(95)00050-x.

Functional and pharmacological properties of human neocortical neurons maintained in vitro

Affiliations
Free article
Review

Functional and pharmacological properties of human neocortical neurons maintained in vitro

M Avoli et al. Prog Neurobiol. 1996 Apr.
Free article

Abstract

The availability of neocortical tissue obtained during brain surgery has allowed for detailed studies of the membrane and synaptic properties of neurons maintained in vitro in a slice preparation. Many of the findings obtained in these studies are summarized here. The majority of the basic electrophysiological properties appear to be similar when human and rodent neurons are compared. However, some notable exceptions regarding specific membrane properties have been reported. Since the majority of the material used in these studies is obtained from epileptic patients, several neuroscientists have tried to determine whether this tissue retains any sign of epileptogenicity when analyzed in vitro. Abnormal synaptic activity was only seen in a fraction of neurons near identified anatomical foci, including tumors, or within neocortical areas that displayed abnormal electrographic activity in situ. This cellular activity included both the presence of all-or-none and graded synaptic bursts. Epileptiform activity comparable to that seen in rodent tissue has been obtained in vitro using several pharmacological procedures including the disinhibition and the Mg(2+)-free model. In conclusion, electrophysiological and pharmacological studies of the human neocortex obtained during surgery have so far been unsuccessful in isolating any definite cellular mechanism that may account for the expression of the epileptiform activity in situ. Nevertheless, these studies have provided valuable information on the cellular and synaptic properties of human neocortex under normal conditions, and following experimental procedures capable of increasing neuronal excitability.

PubMed Disclaimer

Publication types

LinkOut - more resources