Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Jun 3;723(1-2):190-5.
doi: 10.1016/0006-8993(96)00245-4.

Basic fibroblast growth factor modulates synaptic transmission in cultured rat hippocampal neurons

Affiliations

Basic fibroblast growth factor modulates synaptic transmission in cultured rat hippocampal neurons

T Tanaka et al. Brain Res. .

Abstract

Basic fibroblast growth factor (bFGF) is one of the effective growth factors that protect neurons against excitotoxic/ischemic injury and promote neuronal survival. In the present study, we examined the acute modulative effect of bFGF on synaptic transmission by monitoring spontaneous intracellular Ca2+ ([Ca2+]i) oscillation, the amplitudes of which reflect excitatory and inhibitory inputs. The hippocampal cells from embryonic day 18 rats were cultured for 11-14 days, and changes in [Ca2+]i of single neurons were measured by a microfluometrical technique with fura-2. The amplitude of spontaneous oscillation was decreased by 10 ng/ml bFGF, but not by nerve growth factor (10-1000 ng/ml). Acidic FGF (1000 ng/ml) had a weaker depressant effect. The effect of bFGF was counteracted by suramin. bFGF did not affect the increase in [Ca2+]i evoked by glutamate agonists, NMDA or kainate, indicating that glutamate receptors are not involved in the mechanism. This is supported by similar results that kainate-evoked current was not affected by bFGF. On the other hand, bicuculline masked the effect of bFGF on the Ca2+ oscillation. But GABA-evoked current was slightly decreased by bFGF. These results suggest the possible role of bFGF in modulating GABAergic rather than glutamatergic neurotransmission.

PubMed Disclaimer

LinkOut - more resources