Cholinergic stimulation of AP-1 and NF kappa B transcription factors is differentially sensitive to oxidative stress in SH-SY5Y neuroblastoma: relationship to phosphoinositide hydrolysis
- PMID: 8815874
- PMCID: PMC6579165
- DOI: 10.1523/JNEUROSCI.16-19-05914.1996
Cholinergic stimulation of AP-1 and NF kappa B transcription factors is differentially sensitive to oxidative stress in SH-SY5Y neuroblastoma: relationship to phosphoinositide hydrolysis
Abstract
Oxidative stress appears to contribute to neuronal dysfunction in a number of neurodegenerative conditions, notably including Alzheimer's disease, in which cholinergic receptor-linked signal transduction activity is severely impaired. To test whether oxidative stress could contribute to deficits in cholinergic signaling, responses to carbachol were measured in human neuroblastoma SH-SY5Y cells exposed to H2O2. DNA binding activities of two transcription factors that are respondent to oxidative conditions, AP-1 and NF kappa B, were measured in nuclear extracts. H2O2 and carbachol individually induced dose- and time-dependent increases in AP-1 and NF kappa B. In contrast, when given together, H2O2 concentration dependently (30-300 microM) inhibited the increase after carbachol in AP-1. Carbachol's stimulation of NF kappa B was not inhibited except with a high concentration (300 microM) of H2O2, which was associated with impaired activation of protein kinase C. Lower concentrations of H2O2 (30-300 microM) inhibited carbachol-induced [3H]phosphoinositide hydrolysis, and this inhibition correlated (r = 0.95) with the inhibition of carbachol-induced AP-1. Activation [3H]phosphoinositide hydrolysis by the calcium ionophore ionomycin was unaffected by H2O2, indicating that phospholipase C and phosphoinositides were impervious to this treatment. In contrast, activation with NaF of G-proteins coupled to phospholipase C was concentration dependently inhibited by H2O2, indicating impaired G-protein function. These effects of H2O2 are similar to signaling impairments reported in Alzheimer's disease brain, which involve deficits in receptor- and G-protein-stimulated phosphoinositide hydrolysis, but not phospholipase C activity. Thus, these findings indicate that oxidative stress may contribute to impaired phosphoinositide signaling in neurological disorders in which oxidative stress occurs, and that oxidative stress can differentially influence transcription factors activated by cholinergic stimulation.
Figures











References
-
- Abate C, Patel L, Rauscher FJ, Curran T. Redox regulation of fos and jun DNA-binding activity in vitro. Science. 1990;249:1157–1161. - PubMed
-
- Behl C, Davis JB, Lesley R, Schubert D. Hydrogen peroxide mediates amyloid β protein toxicity. Cell. 1994;77:817–827. - PubMed
-
- Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem. 1976;72:248–254. - PubMed
-
- Coyle JT, Puttfarcken P. Oxidative stress, glutamate, and neurodegenerative disorders. Science. 1993;262:689–695. - PubMed
-
- Finco TS, Baldwin AS. Mechanistic aspects of NF-κB regulation: the emerging role of phosphorylation and proteolysis. Immunity. 1995;3:263–272. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources