Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 May-Jun;73(5-6):247-52.
doi: 10.1139/o95-030.

Relationship between quenching of variable fluorescence and thermal dissipation in isolated thylakoid membranes: similar terminology and mathematical treatments may be used

Affiliations

Relationship between quenching of variable fluorescence and thermal dissipation in isolated thylakoid membranes: similar terminology and mathematical treatments may be used

D Z Markovic et al. Biochem Cell Biol. 1995 May-Jun.

Abstract

Simultaneous measurements of chlorophyll fluorescence and thermal emission using photoacoustic spectroscopy have been done in isolated thylakoid membranes to study the relationship between the photochemical quenching of fluorescence (qPF) and energy storage measured in photoacoustic experiments. It is shown that energy storage can be interpreted as the photochemical quenching of a variable component of thermal dissipation termed qPH. The parameters qPF were similarly sensitive to light intensity as demonstrated by their half-saturation light intensity. However, the nonvariable part of thermal dissipation (Ho) represented a greater proportion of the maximal thermal dissipation yield in comparison with the corresponding non-variable component of fluorescence (Fo) as a result of the thermal energy losses occurring during electron transport. A residual qPH found when qPF was removed indicated the participation of cyclic photosystem I or photosystem II in the measured qPH. The participation of cyclic photosystem I was also suggested by a low constant K, representing the quasi equilibria between (re)oxidized and reduced photosystem II quinone acceptors as determined from the logarithmic plots of the hyperbolic relationship obtained between qPH and light intensity. It is finally concluded that the terminology and mathematical treatments used for fluorescence measurements can be applied to thermal dissipation.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources