Phosphoinositide second messengers in olfaction
- PMID: 8829799
- DOI: 10.1016/0305-0491(95)02040-3
Phosphoinositide second messengers in olfaction
Abstract
Olfactory stimuli (odorants) are detected and recognized by binding to receptors belonging to the G-protein-coupled receptor superfamily. The binding of odorants to some receptors stimulates the activity of an odorant-sensitive phospholipase C (PLC) thereby generating the second messengers inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). IP3 plays a key role in membrane depolarization by binding to a receptor that is itself a cation channel. The formation of DAG is expected to stimulate the activity of protein kinase C (PKC). PKC, together with G-protein-coupled receptor kinases, mediates signal termination by phosphorylation of odorant receptors and possibly other substrates. This review summarizes recent evidence regarding the role of phosphoinositide-derived second messengers in the molecular events underlying olfactory signaling. In addition, the role of calcium as a "third messenger" that provides a mechanism for interaction between phosphoinositide second messengers and components of the cyclic AMP signaling pathway is also discussed.
Publication types
MeSH terms
Substances
LinkOut - more resources
Other Literature Sources