Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Jun;17(6):1011-7.
doi: 10.1002/elps.1150170608.

Deterministic model of DNA gel electrophoresis in strong electric fields

Affiliations

Deterministic model of DNA gel electrophoresis in strong electric fields

N Lee et al. Electrophoresis. 1996 Jun.

Abstract

We present a new model for the motion of a megabase-long DNA molecule undergoing gel electrophoresis. We assume that the dynamics of large segments of DNA is almost deterministic and can be described by a set of simple mechanical equations. This allows the numerical study of gel electrophoresis of ultra-high molecular weight DNA. A strong electric field forces DNA in a gel into a tree-like structure with branches-loops of different sizes. We determined the loop-size distribution function. This distribution has a power law form, confirming the hypothesis of the statistical self-similarity of a moving polymer. We find periodic configuration changes in the motion of a circular polymer, with the average period proportional to the molecular weight. During the period, a polymer goes through three distinct phases: a simple V-shape configuration, a growing tree, and a decaying tree. For a linear polymer this periodicity is much less pronounced because of additional perturbations to the dynamics caused by free ends. A circular polymer stays in a simple V-shaped configuration about 30% of the time, independent of molecular weight (10% for a linear polymer).

PubMed Disclaimer

Publication types

LinkOut - more resources